Free Access
Issue
ESAIM: COCV
Volume 13, Number 1, January-March 2007
Page(s) 1 - 34
DOI https://doi.org/10.1051/cocv:2007002
Published online 14 February 2007
  1. G. Allaire and G. Francfort, Existence of minimizers for non-quasiconvex functionals arising in optimal design. Ann. Inst. H. Poincaré Anal. non Linéaire 15 (1998) 301–339. [CrossRef] [MathSciNet] [Google Scholar]
  2. G. Allaire and R.V. Kohn, Optimal lower bounds on the elastic energy of a composite made from two non-well ordered isotropic materials. Quart. Appl. Math. LII (1994) 311–333. [Google Scholar]
  3. G. Allaire and V. Lods, Minimizer for a double-well problem with affine boundary conditions. Proc. Roy. Soc. Edinburgh Sec. A 129 (1999) 439–466. [Google Scholar]
  4. G. Allaire and H. Maillot, H-measures and bounds on the effective properties of composite materials. Port. Math. (N.S.) 60 (2003) 161–192. [Google Scholar]
  5. M. Avellaneda, A.V. Cherkaev, K.A. Lurie and G.W. Milton, On the effective conductivity of polycrystals and a three dimensional phase interchange inequality. J. Appl. Phys. 63 (1988) 4989–5003. [NASA ADS] [CrossRef] [Google Scholar]
  6. M.J. Beran, Nuovo Cimento 38 (1965) 771–782. [Google Scholar]
  7. D.J. Bergman, The dielectric constant of a composite material: a problem in classical physics. Phys. Rep. 43 (1978) 377-407. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  8. D.J. Bergman, Rigorous bounds for the complex dielectric constant of a two-component composite. Ann. Physics 138 (1982) 78–114. [CrossRef] [MathSciNet] [Google Scholar]
  9. R. Bhatia, Matrix Analysis. Graduate texts in Mathematics, Springer-Verlag, New York (1997). [Google Scholar]
  10. J.G. Berryman and G.W. Milton, Microgeometry of random composites and porous media. J. Phys. D: Appl. Phys. 21 (1988) 87–94. [CrossRef] [Google Scholar]
  11. A. Cherkaev, Variational methods for structural optimization. Applied Mathematical Sciences 140, Springer-Verlag, Berlin (2000). [Google Scholar]
  12. A.V. Cherkaev and L.V. Gibiansky, The exact coupled bounds for effective tensors of electrical and magnetic properties of two-component two-dimensional composites. Proc. Roy. Soc. Edinburgh Sect. A 122 (1992) 93–125. [MathSciNet] [Google Scholar]
  13. K. Clark and G. Milton, Optimal bounds correlating electric, magnetic and thermal properties of two phases, two dimensional composites. Proc. R. Soc. Lond. A, 448 (1995) 161–190. [Google Scholar]
  14. G. Dal Maso, An introduction to Formula -convergence. Progress in Nonlinear Differential Equations and their Applications 8, Birkhauser Boston, Inc., Boston, MA (1993). [Google Scholar]
  15. E. De Giorgi and S. Spagnolo, Sulla convergenza degli integrali dell'energia per operatori ellittici del secondo ordine. Bull. Un. Mat. Ital (4) 8 (1973) 391–411. [Google Scholar]
  16. G. Dell'Antonio and V. Nesi, A scalar inequality which bounds the effective conductivity of composites. Proc. Royal Soc. London A 431 (1990) 519–530. [CrossRef] [Google Scholar]
  17. A.M. Dykhne, Conductivity of a two-dimensional two-phase system. Soviet Physiscs JETP 32 (1971) 63–65. [Google Scholar]
  18. I. Fonseca and S. Müller, A-quasiconvexity, lower semicontinuity, and Young measures. SIAM J. Math. Anal. 30 (1999) 1355–1390. [CrossRef] [MathSciNet] [Google Scholar]
  19. L.V. Gibiansky, Effective properties of a plane two-phase elastic composites: coupled bulk-shear moduli bounds, in Homogenization, Ser. Adv. Math, Appl. Sci. 50, World Sci. Publishing, River Edge, NJ (1999) 214–258. [Google Scholar]
  20. L.V. Gibiansky and A.V. Cherkaev, Design of composite plates of extremal rigidity and/or Microstructures of composites of extremal rigidity and exact bounds on the associated energy density, in Topics in the mathematical modelling of composite materials, A. Cherkaev and R. Kohn Eds., Progr. Nonlinear Differential Equations Appl. 31, Birkhäuser Boston, Inc., Boston, MA, (1997). [Google Scholar]
  21. L.V. Gibiansky and A.V. Cherkaev, Coupled estimates for the bulk and shear moduli of a two-dimensional isotropic elastic composite. J. Mech. Phys. Solids 41 (1993) 937–980. [CrossRef] [MathSciNet] [Google Scholar]
  22. L.V. Gibiansky and S. Torquato, Link between the conductivity and elastic moduli of composite materials. Phys. Rev. Lett. 71 (1993) 2927–2930. [CrossRef] [PubMed] [Google Scholar]
  23. L.V. Gibiansky and S. Torquato, Connection between the conductivity and bulk modulus of Isotropic composite materials. Proc. Roy. Soc. London A 452 (1996) 253–283. [CrossRef] [Google Scholar]
  24. L.V. Gibiansky and S. Torquato, Phase-interchange relations for the elastic moduli of two-phase composites. Internat. J. Engrg. Sci. 34 (1996) 739–760. [CrossRef] [Google Scholar]
  25. G.H. Goldsztein, Rigid-pefectly-plastic two-dimensional polycrystals. Proc. Roy. Soc. Lond. A 457 (2003) 1949–1968. [Google Scholar]
  26. Z. Hashin and S. Shtrikman, A variational approach to the theory of effective magnetic permeability of multiphase materials. J. Appl. Phys. 33 (1962) 3125–3131. [CrossRef] [Google Scholar]
  27. V.V. Jikov, S.M. Kozlov and O. A. Oleĭnik, Homogenization of differential operators and integral functionals. Translated from the Russian by G.A. Yosifian, Springer-Verlag, Berlin (1994). [Google Scholar]
  28. J.B. Keller, A theorem on the conductivity of a composite medium. J. Math. Phys. 5 (1964) 548–549. [CrossRef] [Google Scholar]
  29. R.V. Kohn and G. Strang, Optimal design and relaxation of variational problems I. Comm. Pure Appl. Math. 39 (1986) 113–137. [CrossRef] [MathSciNet] [Google Scholar]
  30. R.V. Kohn and G. Strang, Optimal design and relaxation of variational problems II. Comm. Pure Appl. Math. 39 (1986) 139–182. [CrossRef] [MathSciNet] [Google Scholar]
  31. R.V. Kohn and G. Strang, Optimal design and relaxation of variational problems III. Comm. Pure Appl. Math. 39 (1986) 353–377. [CrossRef] [MathSciNet] [Google Scholar]
  32. K.A. Lurie and A.V. Cherkaev, Exact estimates of conductivity of composites formed by two isotropically conducting media taken in prescribed proportions. Proc. Roy. Soc. Edinburgh Sect. A 99 (1984) 71–87. [MathSciNet] [Google Scholar]
  33. M. Milgrom and M.M. Shtrickman, Linear response of two-phase composites with cross moduli: Exact universal relations. Physical Review A (Atomic, Molecular and Optical Physics) 40 (1989) 1568–1575. [Google Scholar]
  34. G.W. Milton, Bounds on the transport and optical properties of a two-component composite material, J. Appl. Phys. 52 (1981) 5294–5304. [Google Scholar]
  35. G.W. Milton, Bounds on the complex permittivity of a two-component composite material. J. Appl. Phys. 52 (1981) 5286–5293. [CrossRef] [Google Scholar]
  36. G.W. Milton, On characterizing the set of possible effective tensors of composites: the variational method and the translation method. Comm. Pure Appl. Math. 43 (1990) 63–125. [CrossRef] [MathSciNet] [Google Scholar]
  37. G.W. Milton, Bounds on the elastic and transport properties of two-component composites. J. Mech. Phys. Solids 30 (1982) 177–191. [CrossRef] [MathSciNet] [Google Scholar]
  38. G.W. Milton, The theory of composites. Cambridge Monographs on Applied and Computational Mathematics 6, Cambridge University Press, Cambridge (2002). [Google Scholar]
  39. G.W. Milton and R.V. Kohn, Variational bounds on the effective moduli of anisotropic composites. J. Mech. Phys. Solids 36 (1988) 597–629. [CrossRef] [MathSciNet] [Google Scholar]
  40. G.W. Milton and S.K. Serkov, Bounding the current in nonlinear conducting composites. The J.R. Willis 60th anniversary volume. J. Mech. Phys. Solids 48 (2000) 1295–1324. [CrossRef] [MathSciNet] [Google Scholar]
  41. C.B. Morrey, Multiple integral problems in the calculus of variations and related topics. Ann. Scuola Norm. Sup. Pisa 14 (1960) 1–61. [MathSciNet] [Google Scholar]
  42. F. Murat, Compacité par compensation: condition nécessaire et suffisante de continuité faible sous une hypothèse de rang constant. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 8 (1982) 69–102. [Google Scholar]
  43. F. Murat and L. Tartar, Calcul des variations et homogénéisation, in Homogenization methods: theory and applications in physics (Breau-sans-Nappe, 1983), Collect. Dir. Etudes Rech. Elec. France 57, Eyrolles, Paris (1985) 319–369. English translation (see [46]). [Google Scholar]
  44. F. Murat and L. Tartar H-convergence, Séminaire d'Analyse Fonctionnelle et Numérique de l'Université d'Alger, mimeographed notes (1978). English translation (see [45]). [Google Scholar]
  45. F. Murat and L. Tartar, H-convergence, in Topics in the mathematical modelling of composite materials, Birkhauser Boston, Boston, MA, Progr. Nonlinear Differential Equations Appl. 31 (1997) 21–43 [Google Scholar]
  46. F. Murat and L. Tartar, Calculus of variations and homogenization, in Topics in the mathematical modelling of composite materials, Birkhauser Boston, Boston, MA, Progr. Nonlinear Differential Equations Appl. 31 (1997) 139–173. [Google Scholar]
  47. V. Nesi, Multiphase interchange inequalities. J. Math. Phys 32 (1991) 2263–2275. [CrossRef] [MathSciNet] [Google Scholar]
  48. V. Nesi, Bounds on the effective conductivity of 2-dimensional composites made of Formula isotropic phases in prescribed volume fraction: the weighted translation method. Proc. Roy. Soc. Edinburgh Sect. A 125 (1995) 1219–1239. [CrossRef] [MathSciNet] [Google Scholar]
  49. S. Prager, Improved variational bounds on some bulk properties of a two-phase random media. J. Chem. Phys. 50 (1969) 4305–4312. [CrossRef] [Google Scholar]
  50. C. Procesi, The invariant theory of Formula matrices. Adv. Math. 19 (1976) 306-381. [CrossRef] [Google Scholar]
  51. E. Rogora, Invariants of matrices under the action of the special orthogonal group, preprint del Dipartimento di Matematica, Università di Roma “La Sapienza", n. 10/2005, also available at http://www.mat.uniroma1.it/people/rogora/pdf/son.pdf. [Google Scholar]
  52. K. Schulgasser, Bounds on the conductivity of statistically isotropic polycrystals. J. Phys. C10 (1977) 407–417. [Google Scholar]
  53. S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Sc. Norm. Sup. Pisa 22 (1968) 577–597. [Google Scholar]
  54. V. Šverak, New examples of quasiconvex functions. Arch. Rational Mech. Anal. 119 (1992) 293–300. [CrossRef] [MathSciNet] [Google Scholar]
  55. V. Šverak, Rank-one convexity does not imply quasiconvexity. Proc. Roy. Soc. Edinburgh Sect. A 120 (1992) 18–189. [Google Scholar]
  56. D.R.S. Talbot and J.R. Willis, Bounds for the effective relation of anonlinear composite. Proc. R. Soc. A 460 (2004) 2705–2723. [CrossRef] [Google Scholar]
  57. L. Tartar, Estimations de coefficients homogénéisés, in Computing methods in applied science and engeneering (Proc. third Int. Sympos. Versailles, 1977), Lect. Notes Math. 704, Springer Verlag, Berlin (1979) 364–373. English translation in [60]. [Google Scholar]
  58. L. Tartar, Estimations fines des coefficients homogénéisés, in Ennio De Giorgi's Colloquium (Paris 1983), P. Kree Ed., Pitman, Boston (1985) 168–187. [Google Scholar]
  59. L. Tartar, Compensated compactness and applications to p.d.e. in nonlinear analysis and mechanics, in Heriot-Watt Symposium IV, R.J. Knops Ed., Pitman, Boston (1979) 136–212. [Google Scholar]
  60. L. Tartar, Estimations of homogenized coefficients, in Topics in the mathematical modelling of composite materials, Birkhäuser, Boston, Proc. Non Linear Diff. Equations Appl. 31 (1997) 9–20. [Google Scholar]
  61. L. Tartar, An introduction to the homogenization method in optimal design, in Optimal shape design (Tróia, 1998), Springer, Berlin, Lect. Notes Math. 1740 (2002) 47–156. [Google Scholar]
  62. L. Tonelli, Fondamenti di calcolo delle variazioni. Zanichelli, Bologna (1921). [Google Scholar]
  63. J. Von Neumann, Some matrix inequalities and metrization of metric-space Tomsk Univ. Rev. 1 (1937) 286–300 (also in Collected Works 4, 286–300). [Google Scholar]
  64. H. Weyl, The classical groups: Their invariants and representations. Fifteenth printing. Princeton Landmarks in Mathematics, Princeton Paperbacks, Princeton University Press, Princeton, NJ (1997). [Google Scholar]
  65. V.V. Zhikov, Estimates for the averaged matrix and the averaged tensor. Russian Math. Surveys 46 (1991) 65–136. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.