Free Access
Issue
ESAIM: COCV
Volume 13, Number 1, January-March 2007
Page(s) 35 - 71
DOI https://doi.org/10.1051/cocv:2007004
Published online 14 February 2007
  1. A. Aftalion and R.L. Jerrard, On the shape of vortices for a rotating Bose-Einstein condensate. Phys. Rev. A 66 (2002) 023611. [CrossRef] [Google Scholar]
  2. A. Aftalion and R. L. Jerrard, Properties of a single vortex solution in a rotating Bose-Einstein condensate. C. R. Acad. Sci. Paris Ser. I 336 (2003) 713–718. [Google Scholar]
  3. A. Aftalion and T. Rivière, Vortex energy and vortex bending for a rotating Bose-Einstein condensate. Phys. Rev. A 64 (2001) 043611. [CrossRef] [Google Scholar]
  4. G. Alberti, S. Baldo and G. Orlandi, Functions with prescribed singularities. J. Eur. Math. Soc. 5 (2003) 275–311. [Google Scholar]
  5. G. Alberti, S. Baldo and G. Orlandi, Variational convergence for functionals of Ginzburg-Landau type. Indiana Univ. Math J. 54 (2005) 1411–1472. [Google Scholar]
  6. N. Andre and I. Shafrir, Asymptotic behavior of minimizers for the Ginzburg-Landau functional with weight. I, II. Arch. Rational Mech. Anal. 142 (1998) 45–73, 75–98. [CrossRef] [MathSciNet] [Google Scholar]
  7. F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices. Birkhauser, New-York (1994). [Google Scholar]
  8. H. Brezis, J.M. Coron, and E.H. Lieb, Harmonic maps with defects. Comm. Math. Phys. 107 (1986) 649–705. [CrossRef] [MathSciNet] [Google Scholar]
  9. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, London (1992). [Google Scholar]
  10. H. Federer, Geometric Measure Theory. Springer-Verlag, Berlin (1969). [Google Scholar]
  11. M. Giaquinta, G. Modica and J. Soucek, Cartesian Currents in the Calculus of Variations. I, II. Springer-Verlag, New York (1998). [Google Scholar]
  12. R.L. Jerrard and H.M. Soner, The Jacobian and the Ginzburg-Landau functional. Cal. Var. 14 (2002) 151–191. [CrossRef] [Google Scholar]
  13. R.L. Jerrard, A. Montero, and P. Sternberg, Local minimizers of the Ginzburg-Landau energy with magnetic field in three dimensions. Comm. Math. Phys. 249 (2004) 549–577. [MathSciNet] [Google Scholar]
  14. R.V. Kohn and P. Sternberg, Local minimizers and singular perturbations. Proc. Royal Soc. Edin. 111A (1989) 69–84. [Google Scholar]
  15. L. Lassoued and P. Mironescu, Ginzburg-Landau type energy with discontinuous constraint. J. Anal. Math. 77 (1999) 1–26. [CrossRef] [MathSciNet] [Google Scholar]
  16. A. Montero, P. Sternberg, and W. Ziemer, Local minimizers with vortices to the Ginzburg-Landau system in 3-d. Comm. Pure Appl. Math 57 (2004) 99–125. [CrossRef] [MathSciNet] [Google Scholar]
  17. C. Raman, J. R. Abo-Shaeer, J. M. Vogels, K. Xu and W. Ketterle, Vortex nucleation in a stirred Bose-Einstein condensate. Phys. Rev. Lett. 87 (2001) 210402. [CrossRef] [PubMed] [Google Scholar]
  18. T. Rivière, Line vortices in the Formula -Higgs model. Cont. Opt. Calc. Var. 1 (1996) 77–167. [Google Scholar]
  19. P. Rosenbuch, V. Bretin, and J. Dalibard, Dynamics of a single vortex line in a Bose-Einstein condensate. Phys. Rev. Lett. 89 (2002) 200403. [CrossRef] [PubMed] [Google Scholar]
  20. E. Sandier and S. Serfaty. A product estimate for Ginzburg-Landau and corollaries. J. Funct. Anal. 211 (2004) 219–244. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.