Free Access
Issue
ESAIM: COCV
Volume 13, Number 1, January-March 2007
Page(s) 35 - 71
DOI https://doi.org/10.1051/cocv:2007004
Published online 14 February 2007
  1. A. Aftalion and R.L. Jerrard, On the shape of vortices for a rotating Bose-Einstein condensate. Phys. Rev. A 66 (2002) 023611. [CrossRef]
  2. A. Aftalion and R. L. Jerrard, Properties of a single vortex solution in a rotating Bose-Einstein condensate. C. R. Acad. Sci. Paris Ser. I 336 (2003) 713–718.
  3. A. Aftalion and T. Rivière, Vortex energy and vortex bending for a rotating Bose-Einstein condensate. Phys. Rev. A 64 (2001) 043611. [CrossRef]
  4. G. Alberti, S. Baldo and G. Orlandi, Functions with prescribed singularities. J. Eur. Math. Soc. 5 (2003) 275–311. [CrossRef] [MathSciNet]
  5. G. Alberti, S. Baldo and G. Orlandi, Variational convergence for functionals of Ginzburg-Landau type. Indiana Univ. Math J. 54 (2005) 1411–1472. [CrossRef] [MathSciNet]
  6. N. Andre and I. Shafrir, Asymptotic behavior of minimizers for the Ginzburg-Landau functional with weight. I, II. Arch. Rational Mech. Anal. 142 (1998) 45–73, 75–98. [CrossRef] [MathSciNet]
  7. F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau Vortices. Birkhauser, New-York (1994).
  8. H. Brezis, J.M. Coron, and E.H. Lieb, Harmonic maps with defects. Comm. Math. Phys. 107 (1986) 649–705. [CrossRef] [MathSciNet]
  9. L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. CRC Press, London (1992).
  10. H. Federer, Geometric Measure Theory. Springer-Verlag, Berlin (1969).
  11. M. Giaquinta, G. Modica and J. Soucek, Cartesian Currents in the Calculus of Variations. I, II. Springer-Verlag, New York (1998).
  12. R.L. Jerrard and H.M. Soner, The Jacobian and the Ginzburg-Landau functional. Cal. Var. 14 (2002) 151–191. [CrossRef]
  13. R.L. Jerrard, A. Montero, and P. Sternberg, Local minimizers of the Ginzburg-Landau energy with magnetic field in three dimensions. Comm. Math. Phys. 249 (2004) 549–577. [MathSciNet]
  14. R.V. Kohn and P. Sternberg, Local minimizers and singular perturbations. Proc. Royal Soc. Edin. 111A (1989) 69–84.
  15. L. Lassoued and P. Mironescu, Ginzburg-Landau type energy with discontinuous constraint. J. Anal. Math. 77 (1999) 1–26. [CrossRef] [MathSciNet]
  16. A. Montero, P. Sternberg, and W. Ziemer, Local minimizers with vortices to the Ginzburg-Landau system in 3-d. Comm. Pure Appl. Math 57 (2004) 99–125. [CrossRef] [MathSciNet]
  17. C. Raman, J. R. Abo-Shaeer, J. M. Vogels, K. Xu and W. Ketterle, Vortex nucleation in a stirred Bose-Einstein condensate. Phys. Rev. Lett. 87 (2001) 210402. [CrossRef] [PubMed]
  18. T. Rivière, Line vortices in the Formula -Higgs model. Cont. Opt. Calc. Var. 1 (1996) 77–167. [CrossRef] [EDP Sciences]
  19. P. Rosenbuch, V. Bretin, and J. Dalibard, Dynamics of a single vortex line in a Bose-Einstein condensate. Phys. Rev. Lett. 89 (2002) 200403. [CrossRef] [PubMed]
  20. E. Sandier and S. Serfaty. A product estimate for Ginzburg-Landau and corollaries. J. Funct. Anal. 211 (2004) 219–244.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.