Free Access
Volume 13, Number 2, April-June 2007
Page(s) 207 - 236
Published online 12 May 2007
  1. A.A. Agrachev and R.V. Gamkrelidze, Second order optimality condition for the time optimal problem. Matem. Sbornik 100 (1976) 610–643. English transl. in: Math. USSR Sbornik 29 (1976) 547–576. [Google Scholar]
  2. A.A. Agrachev and R.V. Gamkrelidze, Symplectic geometry for optimal control, Nonlinear controllability and optimal control. Dekker, New York, Monogr. Textbooks Pure Appl. Math. 133 (1990) 263–277. [Google Scholar]
  3. A.A. Agrachev and Yu.L. Sachkov, Control theory from the geometric viewpoint, Encyclopedia of Mathematical Sciences, 87. Control Theory and Optimization, II. Springer-Verlag, Berlin (2004) 412 pp. [Google Scholar]
  4. A.A. Agrachev and A.V. Sarychev, Abnormal sub-Riemannian geodesics: Morse index and rigidity. Ann. Inst. Henri Poincaré 13 (1996) 635–690. [Google Scholar]
  5. A.A. Agrachev and A.V. Sarychev, On abnormal extremals for Lagrange variational problems. J. Math. Syst. Estim. Cont. 8 (1998) 87–118. [Google Scholar]
  6. C. Bischof, A. Carle, P. Kladem and A. Mauer, Adifor 2.0: Automatic Differentiation of Fortran 77 Programs. IEEE Comput. Sci. Engrg. 3 (1996) 18–32. [CrossRef] [Google Scholar]
  7. O. Bolza, Calculus of variations. Chelsea Publishing Co., New York (1973). [Google Scholar]
  8. B. Bonnard, Feedback equivalence for nonlinear systems and the time optimal control problem. SIAM J. Control Optim. 29 (1991) 1300–1321. [CrossRef] [MathSciNet] [Google Scholar]
  9. B. Bonnard and J.-B. Caillau, Introduction to nonlinear optimal control, in Advances Topics in Control Systems Theory, Lecture Notes from FAP 2004, F. Lamnabhi-Lagarrigue, A. Loria, E. Panteley Eds., Springer, Berlin (2005). [Google Scholar]
  10. B. Bonnard and M. Chyba, The role of singular trajectories in control theory. Springer Verlag, New York (2003). [Google Scholar]
  11. B. Bonnard and I. Kupka, Théorie des singularités de l'application entrée/sortie et optimalité des trajectoires singulières dans le problème du temps minimal. Forum Math. 5 (1993) 111–159. [CrossRef] [MathSciNet] [Google Scholar]
  12. B. Bonnard, J.-B. Caillau and E. Trélat, Geometric optimal control of elliptic Keplerian orbits. Discrete Contin. Dyn. Syst. 5 (2005) 929–956. [CrossRef] [MathSciNet] [Google Scholar]
  13. B. Bonnard, J.-B. Caillau and E. Trélat, Cotcot: short reference manual, ENSEEIHT-IRIT Technical Report RT/APO/05/1 (2005) [Google Scholar]
  14. J.B. Caillau, J. Noailles and J. Gergaud, 3D Geosynchronous Transfer of a Satellite: Continuation on the Thrust. J. Opt. Theory Appl. 118 (2003) 541–565. [CrossRef] [Google Scholar]
  15. Y. Chitour, F. Jean and E. Trélat, Genericity results for singular trajectories. J. Diff. Geom. 73 (2006) 45–73. [Google Scholar]
  16. J. de Morant, Contrôle en temps minimal des réacteurs chimiques discontinus. Ph.D. Thesis, Univ. Rouen (1992). [Google Scholar]
  17. S. Galot, D. Hulin and J. Lafontaine, Riemannian geometry. Springer-Verlag, Berlin (1987). [Google Scholar]
  18. B.S. Goh, Necessary conditions for singular extremals involving multiple control variables. SIAM J. Cont. 4 (1966) 716–731. [Google Scholar]
  19. M.R. Hestenes, Application of the theory of quadratic forms in Hilbert spaces to the calculus of variations. Pac. J. Math. 1 (1951) 525–582. [Google Scholar]
  20. M.R. Hestenes, Optimization theory – the finite dimensional case. Wiley (1975). [Google Scholar]
  21. A.D. Ioffe and V.M. Tikhomirov, Theory of extremal problems. North-Holland Publishing Co., Amsterdam (1979). [Google Scholar]
  22. H.J. Kelley, R. Kopp and H.G. Moyer, Singular extremals, in Topics in optimization, G. Leitman Ed., Academic Press, New York (1967) 63–101. [Google Scholar]
  23. A.J. Krener, The high-order maximum principle and its applications to singular extremals. SIAM J. Cont. Opt. 15 (1977) 256–293. [Google Scholar]
  24. L. Pontryagin, V. Boltyanskii, R. Gamkrelidze and E. Mischenko, The mathematical theory of optimal processes. Wiley Interscience (1962). [Google Scholar]
  25. A.V. Sarychev, The index of second variation of a control system. Matem. Sbornik 113 (1980) 464–486. English transl. in: Math. USSR Sbornik 41 (1982) 383–401. [Google Scholar]
  26. L.F. Shampine, H.A. Watts and S. Davenport, Solving non-stiff ordinary differential equations – the state of the art. Technical Report sand75-0182, Sandia Laboratories, Albuquerque, New Mexico (1975). [Google Scholar]
  27. E. Trélat, Asymptotics of accessibility sets along an abnormal trajectory. ESAIM: COCV 6 (2001) 387–414. [CrossRef] [EDP Sciences] [Google Scholar]
  28. L.C. Young, Lectures on the calculus of variations and optimal control theory. Chelsea, New York (1980). [Google Scholar]
  29. O. Zarrouati, Trajectoires spatiales. CNES-Cepadues, Toulouse (1987). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.