Free Access
Issue |
ESAIM: COCV
Volume 13, Number 2, April-June 2007
|
|
---|---|---|
Page(s) | 294 - 304 | |
DOI | https://doi.org/10.1051/cocv:2007018 | |
Published online | 12 May 2007 |
- G. Aronsson, Extensions of functions satisfiying Lipschitz conditions. Ark. Math. 6 (1967) 551–561. [CrossRef] [Google Scholar]
- G. Aronsson, M.G. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing functions. Bull. Amer. Math. Soc. 41 (2004) 439–505. [Google Scholar]
- G. Barles and J. Busca, Existence and comparison results for fully nonlinear degenerate elliptic equations without zeroth-order term. Comm. Part. Diff. Eq. 26 (2001) 2323–2337. [Google Scholar]
-
M. Belloni and B. Kawohl, The pseudo-p-Laplace eigenvalue problem and viscosity solutions as
. ESAIM: COCV 10 (2004) 28–52. [CrossRef] [EDP Sciences] [Google Scholar]
-
M. Belloni, B. Kawohl and P. Juutinen, The p-Laplace eigenvalue problem as
in a Finsler metric. J. Europ. Math. Soc. (to appear). [Google Scholar]
-
G. Bouchitte, G. Buttazzo and L. De Pasquale, A
laplacian approximation for some mass optimization problems. J. Optim. Theory Appl. 118 (2003) 125. [Google Scholar]
- M.G. Crandall, H. Ishii and P.L. Lions, User's guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. 27 (1992) 1–67. [Google Scholar]
- M.G. Crandall, L.C. Evans and R.F. Gariepy, Optimal Lipschitz extensions and the infinity Laplacian. Calc. Var. PDE 13 (2001) 123–139. [Google Scholar]
- L.C. Evans and W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem. Mem. Amer. Math. Soc. 137 (1999), No. 653. [Google Scholar]
- R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup norm of the gradient. Arch. Rational Mech. Anal. 123 (1993) 51–74. [Google Scholar]
- O. Savin, C1 regularity for infinity harmonic functions in two dimensions. Arch. Rational Mech. Anal. 176 (2005) 351–361. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.