Free Access
Issue
ESAIM: COCV
Volume 13, Number 4, October-December 2007
Page(s) 623 - 638
DOI https://doi.org/10.1051/cocv:2007038
Published online 05 September 2007
  1. V. Barbu, Exact controllability of the superlinear heat equation. Appl. Math. Optim. 42 (2000) 73–89. [CrossRef] [MathSciNet] [Google Scholar]
  2. T. Cazenave and A. Haraux, Introduction aux Problèmes d'Evolution Semi-Linéaires, Collection Mathématiques et Applications de la SMAI. Éditions Ellipses, Paris (1991). [Google Scholar]
  3. R. Dorville, Sur le contrôle de quelques problèmes singuliers associés à l'équation de la chaleur. Ph.D. thesis, Université des Antilles et de la Guyane (2004). [Google Scholar]
  4. R. Dorville, O. Nakoulima and A. Omrane, Low-regret control for singular distributed systems: The backwards heat ill-posed problem. Appl. Math. Lett. 17 (2004) 549–552. [CrossRef] [MathSciNet] [Google Scholar]
  5. A. Doubova, A. Osses and J.P. Puel, Exact controllability to trajectories for semilinear heat equations with discontinuous diffusion coefficients. ESAIM: COCV 8 (2002) 621–661. [CrossRef] [EDP Sciences] [Google Scholar]
  6. C. Fabre, J.P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation. Proc. Royal Soc. Edinburg 125A (1995) 31–61. [Google Scholar]
  7. E. Fernández-Cara, Nul controllability of the semilinear heat equation. ESAIM: COCV 2 (1997) 87–103. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  8. E. Fernández-Cara and S. Guerrero, Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim. 45 (2006) 1395–1446. [CrossRef] [Google Scholar]
  9. E. Fernández-Cara and E. Zuazua, The cost of approximate controllability for heat equations: the linear case. Adv. Differ. Equ. 5 (2000) 465–514. [Google Scholar]
  10. A. Fursikov and O.Yu. Imanuvilov, Controllability of evolution equations, Lecture Notes. Research Institute of Mathematics, Seoul National University, Korea (1996). [Google Scholar]
  11. O.Yu. Imanuvilov, Controllability of parabolic equations. Sbornik Math. 186 (1995) 879–900. [CrossRef] [MathSciNet] [Google Scholar]
  12. G. Lebeau and L. Robbiano, Contrôle exacte de l'équation de la chaleur. Comm. Part. Diff. Eq. 20 (1995) 335–356. [CrossRef] [MathSciNet] [Google Scholar]
  13. J.L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod, Gauthier-Villars, Paris (1968). [Google Scholar]
  14. J.L. Lions, Sentinelles pour les systèmes distribués à données incomplètes. Masson, Paris (1992). [Google Scholar]
  15. J.L. Lions and M. Magenes, Problèmes aux limites non homogènes et applications. Vols. 1 et 2, Dunod, Paris (1988). [Google Scholar]
  16. O. Nakoulima, Contrôlabilité à zéro avec contraintes sur le contrôle. C. R. Acad. Sci. Paris Ser. I Math. 339 (2004) 405–410. [Google Scholar]
  17. D.L. Russell, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations. Stud. App. Math. 52 (1973) 189–212. [Google Scholar]
  18. E. Zuazua, Exact boundary controllability for the semilinear wave equation. Non linear Partial Diff. Equ. Appl. 10 (1989) 357–391. [Google Scholar]
  19. E. Zuazua, Finite dimensional null controllability for the semilinear heat equation. J. Math. Pures Appl. 76 (1997) 237–264. [CrossRef] [MathSciNet] [Google Scholar]
  20. E. Zuazua, controllability of partial differential equations and its semi-discrete approximations. Discrete Continuous Dynam. Syst. 8 (2002) 469–513. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.