Free Access
Issue
ESAIM: COCV
Volume 13, Number 4, October-December 2007
Page(s) 639 - 656
DOI https://doi.org/10.1051/cocv:2007039
Published online 05 September 2007
  1. E. Acerbi and N. Fusco, A regularity theorem for minimizers of quasiconvex integrals. Arch. Ration. Mech. Anal. 99 (1987) 261–281. [Google Scholar]
  2. F. Duzaar, A. Gastel and J.F. Grotowski, Partial regularity for almost minimizers of quasi-convex integrals. SIAM J. Math. Anal. 32 (2000) 665–687. [CrossRef] [MathSciNet] [Google Scholar]
  3. L.C. Evans, Quasiconvexity and partial regularity in the calculus of variations. Arch. Ration. Mech. Anal. 95 (1986) 227–252. [Google Scholar]
  4. L.C. Evans and R.F. Gariepy, Blowup, compactness and partial regularity in the calculus of variations. Indiana Univ. Math. J. 36 (1987) 361–371. [CrossRef] [MathSciNet] [Google Scholar]
  5. N. Fusco and J. Hutchinson, Formula partial regularity of functions minimising quasiconvex integrals. Manuscr. Math. 54 (1985) 121–143. [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems. Princeton Univ. Press, Princeton (1983). [Google Scholar]
  7. M. Giaquinta, The problem of the regularity of minimizers. Proc. Int. Congr. Math., Berkeley 1986 (1987) 1072–1083. [Google Scholar]
  8. M. Giaquinta, Quasiconvexity, growth conditions and partial regularity. Partial differential equations and calculus of variations, Lect. Notes Math. 1357 (1988) 211–237. [Google Scholar]
  9. M. Giaquinta and E. Giusti, On the regularity of the minima of variational integrals. Acta Math. 148 (1982) 31–46. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Giaquinta and E. Giusti, Differentiability of minima of non-differentiable functionals. Invent. Math. 72 (1983) 285–298. [CrossRef] [MathSciNet] [Google Scholar]
  11. M. Giaquinta and E. Giusti, Sharp estimates for the derivatives of local minima of variational integrals. Boll. Unione Mat. Ital. 3A (1984) 239–248. [Google Scholar]
  12. M. Giaquinta and P.-A. Ivert, Partial regularity for minima of variational integrals. Ark. Mat. 25 (1987) 221–229. [CrossRef] [MathSciNet] [Google Scholar]
  13. M. Giaquinta and G. Modica, Partial regularity of minimizers of quasiconvex integrals. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 3 (1986) 185–208. [Google Scholar]
  14. E. Giusti, Metodi diretti nel calcolo delle variazioni. UMI, Bologna (1994). [Google Scholar]
  15. C. Hamburger, Partial regularity for minimizers of variational integrals with discontinuous integrands. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 13 (1996) 255–282. [Google Scholar]
  16. C. Hamburger, A new partial regularity proof for solutions of nonlinear elliptic systems. Manuscr. Math. 95 (1998) 11–31. [CrossRef] [Google Scholar]
  17. C. Hamburger, Partial regularity of minimizers of polyconvex variational integrals. Calc. Var. 18 (2003) 221–241. [CrossRef] [MathSciNet] [Google Scholar]
  18. C. Hamburger, Partial regularity of solutions of nonlinear quasimonotone systems. Hokkaido Math. J. 32 (2003) 291–316. [MathSciNet] [Google Scholar]
  19. C. Hamburger, Partial boundary regularity of solutions of nonlinear superelliptic systems. Boll. Unione Mat. Ital. 10B (2007) 63–81. [Google Scholar]
  20. M.-C. Hong, Existence and partial regularity in the calculus of variations. Ann. Mat. Pura Appl. 149 (1987) 311–328. [CrossRef] [MathSciNet] [Google Scholar]
  21. J. Kristensen and G. Mingione, The singular set of Formula -minima. Arch. Ration. Mech. Anal. 177 (2005) 93–114. [CrossRef] [MathSciNet] [Google Scholar]
  22. J. Kristensen and G. Mingione, The singular set of minima of integral functionals. Arch. Ration. Mech. Anal. 180 (2006) 331–398. [CrossRef] [MathSciNet] [Google Scholar]
  23. J. Kristensen and G. Mingione, The singular set of Lipschitzian minima of multiple integrals. Arch. Ration. Mech. Anal. 184 (2007) 341–369. [CrossRef] [MathSciNet] [Google Scholar]
  24. D. Phillips, A minimization problem and the regularity of solutions in the presence of a free boundary. Indiana Univ. Math. J. 32 (1983) 1–17. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.