Free Access
Volume 14, Number 1, January-March 2008
Page(s) 1 - 42
Published online 20 July 2007
  1. S. Anita and V. Barbu, Null controllability of nonlinear convective heat equations. ESAIM: COCV 5 (2000) 157–173. [CrossRef] [EDP Sciences] [Google Scholar]
  2. M. Boulakia and A. Osses, Local null controllability of a two-dimensional fluid-structure interaction problem. Prépublication 139, UVSQ (octobre 2005). [Google Scholar]
  3. C. Conca, J. San Martin and M. Tucsnak, Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid. Comm. Partial Differential Equations 25 (2000) 1019–1042. [MathSciNet] [Google Scholar]
  4. J.M. Coron and S. Guerrero, Singular optimal control: A linear 1-D parabolic-hyperbolic example. Asymptot. Anal. 44 (2005) 237–257. [MathSciNet] [Google Scholar]
  5. B. Desjardins and M.J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal. 146 (1999) 59–71. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Doubova and E. Fernandez-Cara, Some control results for simplified one-dimensional models of fluid-solid interaction. Math. Models Methods Appl. Sci. 15 (2005) 783–824. [Google Scholar]
  7. C. Fabre and G. Lebeau, Prolongement unique des solutions de l'équation de Stokes. Comm. Partial Diff. Equations 21 (1996) 573–596. [Google Scholar]
  8. C. Fabre, J.-P. Puel and E. Zuazua, Approximate controllability of the semilinear heat equation. Proc. Royal Soc. Edinburgh 125A (1995) 31–61. [Google Scholar]
  9. E. Fernandez-Cara and E. Zuazua, The cost of approximate controllability for heat equations: the linear case. Adv. Differential Equations 5 (2000) 465–514. [MathSciNet] [Google Scholar]
  10. E. Fernandez-Cara, S. Guerrero, O. Yu. Imanuvilov and J.-P. Puel, Local exact controllability of the Navier-Stokes system. J. Math. Pures Appl. 83 (2004) 1501–1542. [CrossRef] [MathSciNet] [Google Scholar]
  11. A.V. Fursikov and O.Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul (1996). [Google Scholar]
  12. O.Yu. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations. ESAIM: COCV 6 (2001) 39–72. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  13. O.Yu. Imanuvilov and J.-P. Puel, Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems. Internat. Math. Res. Notices 16 (2003) 883–913. [Google Scholar]
  14. O.Yu. Imanuvilov and T. Takahashi, Exact controllability of a fluid-rigid body system. Prépublication IECN (novembre 2005). [Google Scholar]
  15. O. Nakoulima, Contrôlabilité à zéro avec contraintes sur le contrôle. C. R. Acad. Sci. Paris Ser. I 339 (2004) 405–410. [Google Scholar]
  16. A. Osses and J.P. Puel, Approximate controllability for a linear model of fluid structure interaction. ESAIM: COCV 4 (1999) 497–513. [CrossRef] [EDP Sciences] [Google Scholar]
  17. J.P. Raymond and M. Vanninathan, Exact controllability in fluid-solid structure: the Helmholtz model. ESAIM: COCV 11 (2005) 180–203. [CrossRef] [EDP Sciences] [Google Scholar]
  18. J. San Martin, V. Starovoitov and M. Tucsnak, Global weak solutions for the two dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Rational Mech. Anal. 161 (2002) 113–147. [CrossRef] [MathSciNet] [Google Scholar]
  19. T. Takahashi, Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain, Adv. Differential Equations 8 (2003) 1499–1532. [Google Scholar]
  20. R. Temam, Behaviour at time Formula of the solutions of semi-linear evolution equations. J. Diff. Equations 43 (1982) 73–92. [CrossRef] [Google Scholar]
  21. J.L. Vázquez, E. Zuazua, Large time behavior for a simplified 1D model of fluid-solid interaction. Comm. Partial Differential Equations 28 (2003) 1705–1738. [CrossRef] [MathSciNet] [Google Scholar]
  22. J.L. Vázquez and E. Zuazua, Lack of collision in a simplified 1-dimensional model for fluid-solid interaction. Math. Models Methods Apll. Sci., M3AS 16 (2006) 637–678. [Google Scholar]
  23. X. Zhang and E. Zuazua, Polynomial decay and control of a Formula hyperbolic-parabolic coupled system. J. Differential Equations 204 (2004) 380–438. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.