Free Access
Issue
ESAIM: COCV
Volume 14, Number 1, January-March 2008
Page(s) 43 - 70
DOI https://doi.org/10.1051/cocv:2007048
Published online 21 September 2007
  1. G. Allaire, Shape optimization by the homogenization method. Springer Verlag, New York (2001). [Google Scholar]
  2. G. Allaire, F.de Gournay, F. Jouve and A.-M. Toader, Structural optimization using topological and shape sensitivity via a level set method. Control Cyb. 34 (2005) 59–80. [Google Scholar]
  3. G. Allaire and F. Jouve, A level-set method for vibrations and multiple loads in structural optimization. Comp. Meth. Appl. Mech. Engrg. 194 (2005) 3269–3290. [CrossRef] [MathSciNet] [Google Scholar]
  4. G. Allaire, F. Jouve and A.-M. Toader, A level set method for shape optimization. C. R. Acad. Sci. Paris 334 (2002) 1125–1130. [Google Scholar]
  5. G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comp. Phys. 194 (2004) 363–393. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  6. G. Auchmuty, Unconstrained variational principles for eigenvalues of real symmetric matrices. SIAM J. Math. Anal. 20 (1989) 1186–1207. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Bendsoe, Methods for optimization of structural topology, shape and material. Springer Verlag, New York, 1995. [Google Scholar]
  8. A. Cherkaev, Variational Methods for Structural Optimization. Springer Verlag, New York, (2000). [Google Scholar]
  9. A. Cherkaev and E. Cherkaeva, Optimal design for uncertain loading condition, in Homogenization, Series on Advances in Mathematics for Applied Sciences 50, V. Berdichevsky et al. Eds., World Scientific, Singapore (1999) 193–213. [Google Scholar]
  10. A. Cherkaev and E. Cherkaeva, Principal compliance and robust optimal design. J. Elasticity 72 (2003) 71–98. [CrossRef] [MathSciNet] [Google Scholar]
  11. F.H. Clarke, Optimization and Nonsmooth Analysis. SIAM, classic in Appl. Math. edition (1990). [Google Scholar]
  12. H. Eschenauer, V. Kobelev and A. Schumacher, Bubble method for topology and shape optimization of structures. Struct. Optim. 8 (1994) 42–51. [CrossRef] [Google Scholar]
  13. S. Garreau, P. Guillaume and M. Masmoudi, The topological asymptotic for pde systems: the elasticity case. SIAM J. Control Optim. 39 (2001) 1756–1778. [CrossRef] [MathSciNet] [Google Scholar]
  14. F.de Gournay, Optimisation de formes par la méthode des lignes de niveaux. Ph.D. thesis, École Polytechnique, France (2005). [Google Scholar]
  15. F.de Gournay, Velocity extension for the level-set method and multiple eigenvalues in shape optimization. SIAM J. Control Optim. 45 (2006) 343–367. [CrossRef] [MathSciNet] [Google Scholar]
  16. F. Murat and S. Simon, Études de problèmes d'optimal design. Lect. Notes Comput. Sci. 41 (1976) 54–62. [Google Scholar]
  17. S.A. Nazarov and Y. Sokolovski, The topological derivative of the dirichlet integral under the formation of a thin bridge. Siberian. Math. J. 45 (2004) 341–355. [CrossRef] [MathSciNet] [Google Scholar]
  18. S. Osher and F. Santosa, Level-set methods for optimization problems involving geometry and constraints: frequencies of a two-density inhomogeneous drum. J. Comput. Phys. 171 (2001) 272–288. [CrossRef] [MathSciNet] [Google Scholar]
  19. P. Pedregal, Vector variational problems and applications to optimal design. ESAIM: COCV 11 (2005) 357–381. [CrossRef] [EDP Sciences] [Google Scholar]
  20. O. Pironneau, Optimal shape design for elliptic systems. Springer-Verlag, New York (1984). [Google Scholar]
  21. J.-A. Sethian, Level-Set Methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision and materials science. Cambridge University Press (1999). [Google Scholar]
  22. J.-A. Sethian and A. Wiegmann, Structural boundary design via level-set and immersed interface methods. J. Comput. Phys. 163 (2000) 489–528. [CrossRef] [MathSciNet] [Google Scholar]
  23. J. Sokolowski and J-P.Zolesio, Introduction to shape optimization: shape sensitivity analysis, Springer Series in Computational Mathematics 16. Springer-Verlag, Berlin (1992). [Google Scholar]
  24. J. Sokolowski and A. Zochowski, On the topological derivative in shape optimization. SIAM J. Control Optim. 37 (1999) 1251–1272. [CrossRef] [MathSciNet] [Google Scholar]
  25. L. Tartar, An introduction to the homogenization method in optimal design, in Optimal shape design, A. Cellina and A. Ornelas Eds., Lecture Notes in Mathematics 1740, Springer, Berlin (1998) 47–156. [Google Scholar]
  26. L. Vandenberghe and S. Boyd, Semidefinite programming. SIAM Rev. 38 (1996) 49–95. [CrossRef] [MathSciNet] [Google Scholar]
  27. M-Y. Wang, X. Wang and D. Guo, A level-set method for structural topology optimization. Comput. Methods Appl. Mech. Engrg. 192 (2003) 227–246. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.