Free Access
Volume 14, Number 4, October-December 2008
Page(s) 657 - 677
Published online 18 January 2008
  1. K. Ammari, A. Henrot and M. Tucsnak, Asymptotic behavior of the solutions and optimal location of the actuator for the pointwise stabilization of a string. Asymptot. Anal. 28 (2001) 215–240. [MathSciNet] [Google Scholar]
  2. A. Bamberger, J. Rauch and M. Taylor, A model for harmonics on stringed instruments. Arch. Rational Mech. Anal. 79 (1982) 267–290. [MathSciNet] [Google Scholar]
  3. G. Banat, Masters of the Violin, Sonatas for the Violin, Jean-Joseph Cassanéa de Mondonville 5. Johnson Reprint (1982). [Google Scholar]
  4. D. Bernoulli, Réflexions et éclaircissemens sur les nouvelles vibrations des cordes exposées dans les mémoires de 1747 and 1748. Histoire de l'Academie royale des sciences et belles lettres 9 (1753) 148–172. [Google Scholar]
  5. A.S. Birch and M.A. Srinivasan, Experimental determination of the viscoelastic properties of the human fingerpad. Touch Lab Report 14, RLE TR-632, MIT, Cambridge (1999). [Google Scholar]
  6. J.T. Cannon and S. Dostrovsky, The Evolution of Dynamics, Vibration Theory from 1687 to 1742. Springer, New York (1981). [Google Scholar]
  7. T. Christensen, Rameau and Musical Thought in the Enlightenment. Cambridge (1993). [Google Scholar]
  8. S.J. Cox, Aye there's the rub, An inquiry into how a damped string comes to rest, in Six Themes on Variation, R. Hardt Ed., AMS (2004) 37–58. [Google Scholar]
  9. S. Cox and E. Zuazua, The rate at which energy decays in a damped string. Comm. Partial Diff. Eq. 19 (1994) 213–243. [Google Scholar]
  10. S. Cox and E. Zuazua, The rate at which energy decays in a string damped at one end. Indiana U. Math. J. 44 (1995) 545–573. [Google Scholar]
  11. G. Cuzzucoli and V. Lombardo, A physical model of the classical guitar, including the player's touch. Comput. Music J. 23 (1999) 52–69. [CrossRef] [Google Scholar]
  12. F.W. Galpin, Monsieur Prin and his trumpet marine. Music Lett. 14 (1933) 18–29. [CrossRef] [Google Scholar]
  13. C. Girdlestone, Jean-Philippe Rameau. Cassell, London (1957). [Google Scholar]
  14. B.-Z. Guo and Y. Xie, A sufficient condition on Riesz basis with parenthesis of nonself-adjoint operator and application to a serially connected string system under joint feedbacks. SIAM J. Control Optim. 43 (2004) 1234–1252. [CrossRef] [MathSciNet] [Google Scholar]
  15. H. Helmholtz, On the Sensations of Tone. Dover (1954). [Google Scholar]
  16. S. Jaffard, M. Tucsnak and E. Zuazua, Singular internal stabilization of the wave equation. J. Diff. Eq. 145 (1998) 184–215. [Google Scholar]
  17. J. Kergomard, V. Debut and D. Matignon, Resonance modes in a 1-D medium with two purely resistive boundaries: calculation methdos, orthogogonality and completeness. J. Acoust. Soc. Am. 119 (2006) 1356–1367. [CrossRef] [Google Scholar]
  18. I. Kovács, Zur Frage der Seilschwingungen und der Seildämpfung. Die Bautechnik 59 (1982) 325–332. [Google Scholar]
  19. M.G. Krein and H. Langer, On some mathematical principles in the linear theory of damped oscillations of continua I. Integr. Equ. Oper. Theory 1 (1978) 364–399. [CrossRef] [Google Scholar]
  20. M.G. Krein and A.A. Nudelman, On direct and inverse problems for the boundary dissipation frequencies of a nonuniform string. Soviet Math. Dokl. 20 (1979) 838–841. [Google Scholar]
  21. S. Krenk, Vibrations of a taut cable with an external damper. J. Appl. Mech. 67 (2000) 772–776. [CrossRef] [Google Scholar]
  22. K.S. Liu, Energy decay problems in the design of a pointwise stabilizer for string vibrating systems. SIAM J. Control Optim. 26 (1988) 1248–1256. [Google Scholar]
  23. M. Marden, Geometry of Polynomials. AMS (1966). [Google Scholar]
  24. D.C. Miller, Anecdotal History of the Science of Sound. Macmillan, New York (1935). [Google Scholar]
  25. J.-P. Rameau, Generation Harmonique, Facsimile of 1737 Paris Ed., Broude Brothers, New York (1966). [Google Scholar]
  26. J.W.S. Rayleigh, Theory of Sound, Vol. 1. Dover (1945). [Google Scholar]
  27. F. Roberts, A discourse concerning the musical notes of the trumpet, and trumpet-marine, and of the defects of the same. Philosophical Transactions 16 (1692) 559–563. [CrossRef] [Google Scholar]
  28. J. Sauveur, Systéme général des intervalles des sons et son application à tous les systémes et à tous les instrumens de musique, Mémoires de l'Académie royale des sciences 1701. Amsterdam (1707) 390–482. [Google Scholar]
  29. B. Taylor, De Moti Nervi Tensi. Philosophical Transactions 28 (1713) 26–32. [Google Scholar]
  30. C. Truesdell, The Rational Mechanics of Flexible or Elastic Bodies, 1638–1788, introduction to Leonhardi Euleri Opera Omnia Vols. 10 and 11, Series 2, Leipzig (1912). [Google Scholar]
  31. J. Tyndall, Sound. D. Appleton (1875). [Google Scholar]
  32. J. Wallis, Concerning a new musical discovery. Philosophical Transactions 12 (1677) 839–842. [CrossRef] [Google Scholar]
  33. G.-Q. Xu and B.-Z. Guo, Riesz basis property of evolution equations in Hilbert spaces and application to a coupled string equation. SIAM J. Control Optim. 42 (2003) 966–984. [CrossRef] [MathSciNet] [Google Scholar]
  34. R.M. Young, An Introduction to Nonharmonic Fourier Series. Academic Press, San Diego (2001). [Google Scholar]
  35. T. Young, A Course of Lectures on Natural Philosophy and the Mechanical Arts. Johnson Reprint (1971). [Google Scholar]
  36. P. Zukovsky, On violin harmonics. Perspectives of New Music 6 (1968) 174–181. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.