Free Access
Issue
ESAIM: COCV
Volume 14, Number 4, October-December 2008
Page(s) 780 - 794
DOI https://doi.org/10.1051/cocv:2008013
Published online 07 February 2008
  1. E. Acerbi, I. Fonseca and G. Mingione, Existence and regularity for mixtures of micromagnetic materials. Proc. Royal Soc. London Sect. A 462 (2006) 2225–2244. [CrossRef] [Google Scholar]
  2. N. Aguilera, H.W. Alt and L.A. Caffarelli, An optimization problem with volume constraint. SIAM J. Control Optim. 24 (1986) 191–198. [CrossRef] [MathSciNet] [Google Scholar]
  3. G. Allaire, F. Jouve and A.M. Toader, A level-set method for shape optimization. C. R. Acad. Sci. Paris 334 (2002) 1125–1130. [Google Scholar]
  4. L. Ambrosio, I. Fonseca, P. Marcellini and L. Tartar, On a volume-constrained variational problem. Arch. Ration. Mech. Anal. 149 (1999) 23–47. [Google Scholar]
  5. A. Braides, Γ-convergence for beginners, Oxford Lecture Series in Mathematics and its Applications 22. Oxford University Press, Oxford (2002). [Google Scholar]
  6. D. Bucur and G. Buttazzo, Variational Methods in Shape Optimization Problems 65. Birkhäuser Boston (2005). [Google Scholar]
  7. G. Dal Maso, An Introduction to Γ-Convergence. Birkhäuser Boston Inc., Boston, MA (1993). [Google Scholar]
  8. M.E. Gurtin, D. Polignone and J. Vinals, Two-phase binary fluids and immissible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6 (1996) 815–831. [CrossRef] [MathSciNet] [Google Scholar]
  9. A. Henrot and M. Pierre, Variation et optimisation de formes, une analyse géométrique 48. Springer-Verlag, Paris (2005). [Google Scholar]
  10. M. Morini and M.O. Rieger, On a volume constrained variational problem with lower order terms. Appl. Math. Optim. 48 (2003) 21–38. [CrossRef] [MathSciNet] [Google Scholar]
  11. S. Mosconi and P. Tilli, Variational problems with several volume constraints on the level sets. Calc. Var. Part. Diff. Equ. 14 (2002) 233–247. [Google Scholar]
  12. S. Osher and F. Santosa, Level set methods for optimization problems involving geometry and constraints: frequencies of a two-density inhomogeneous drum. J. Comput. Phys 171 (2001) 272–288. [CrossRef] [MathSciNet] [Google Scholar]
  13. S. Osher and J.A. Sethian, Front propagation with curvature-dependant speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1988) 12–49. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  14. E. Oudet, Numerical minimization of eigenmodes of a membrane with respect to the domain. ESAIM: COCV 10 (2004) 315–335. [CrossRef] [EDP Sciences] [Google Scholar]
  15. M.O. Rieger, Abstract variational problems with volume constraints. ESAIM: COCV 10 (2004) 84–98. [CrossRef] [EDP Sciences] [Google Scholar]
  16. M.O. Rieger, Higher dimensional variational problems with volume constraints – existence results and Γ-convergence. Interfaces and Free Boundaries (to appear). [Google Scholar]
  17. J. Sokolowski and J.P. Zolesio, Introduction to Shape Optimization: Shape Sensitivity Analysis, Springer Series in Computational Mathematics 10. Springer (1992). [Google Scholar]
  18. P. Vergilius Maro, Aeneidum I. (29–19 BC). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.