Free Access
Volume 15, Number 1, January-March 2009
Page(s) 117 - 138
Published online 23 January 2009
  1. L.J. Álvarez-Vázquez, A. Martínez, C. Rodríguez and M.E. Vázquez-Méndez, Numerical convergence for a sewage disposal problem. Appl. Math. Model. 25 (2001) 1015–1024. [CrossRef]
  2. L.J. Álvarez-Vázquez, A. Martínez, C. Rodríguez and M.E. Vázquez-Méndez, Numerical optimization for the location of wastewater outfalls. Comput. Optim. Appl. 22 (2002) 399–417. [CrossRef] [MathSciNet]
  3. L.J. Álvarez-Vázquez, A. Martínez, C. Rodríguez and M.E. Vázquez-Méndez, Mathematical model for optimal control in wastewater discharges: the global performance. C. R. Biologies 328 (2005) 327–336. [CrossRef]
  4. L.J. Álvarez-Vázquez, A. Martínez, R. Muñoz-Sola, C. Rodríguez and M.E. Vázquez-Méndez, The water conveyance problem: Optimal purification of polluted waters. Math. Models Meth. Appl. Sci. 15 (2005) 1393–1416. [CrossRef]
  5. A. Bermúdez, Numerical modelling of water pollution problems, in Environment, Economics and their Mathematical Models, J.I. Diaz and J.L. Lions Eds., Masson, Paris (1994).
  6. A. Bermúdez, C. Rodríguez and M.A. Vilar, Solving shallow water equations by a mixed implicit finite element method. IMA J. Num. Anal. 11 (1991) 79–97. [CrossRef]
  7. E. Casas, Pontryagin's principle for state constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35 (1997) 1297–1327. [CrossRef] [MathSciNet]
  8. R. Gibbons, A Primer in Game Theory. Pearson Higher Education (1992).
  9. O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Ural'ceva, Linear and quasilinear equations of parabolic type, in Translations of Mathematical Monographs 23, Amer. Math. Soc., Providence (1968).
  10. J.L. Lions, Contrôle optimal des systèmes gouvernés par des équations aux derivées partielles. Dunod, Paris (1968).
  11. J.L. Lions and E. Magenes, Problèmes aux limites non homogenes et applications. Dunod, Paris (1968).
  12. A. Martínez, C. Rodríguez and M.E. Vázquez-Méndez, Theoretical and numerical analysis of an optimal control problem related to wastewater treatment. SIAM J. Control Optim. 38 (2000) 1534–1553. [CrossRef] [MathSciNet]
  13. D. Parra-Guevara and YN. Skiba, Elements of the mathematical modeling in the control of pollutants emissions. Ecol. Model. 167 (2003) 263–275. [CrossRef]
  14. O. Pironneau, Finite Element Methods for Fluids. J. Wiley & Sons, Chichester (1989).
  15. A.M. Ramos, R. Glowinski and J. Periaux, Nash equilibria for the multiobjetive control of linear partial differential equations. J. Optim. Theory Appl. 112 (2002) 457–498. [CrossRef] [MathSciNet]
  16. E. Zeidler, Nonlinear Functional Analysis and its Applications. Springer-Verlag (1993).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.