Free Access
Volume 15, Number 1, January-March 2009
Page(s) 117 - 138
Published online 23 January 2009
  1. L.J. Álvarez-Vázquez, A. Martínez, C. Rodríguez and M.E. Vázquez-Méndez, Numerical convergence for a sewage disposal problem. Appl. Math. Model. 25 (2001) 1015–1024. [CrossRef] [Google Scholar]
  2. L.J. Álvarez-Vázquez, A. Martínez, C. Rodríguez and M.E. Vázquez-Méndez, Numerical optimization for the location of wastewater outfalls. Comput. Optim. Appl. 22 (2002) 399–417. [CrossRef] [MathSciNet] [Google Scholar]
  3. L.J. Álvarez-Vázquez, A. Martínez, C. Rodríguez and M.E. Vázquez-Méndez, Mathematical model for optimal control in wastewater discharges: the global performance. C. R. Biologies 328 (2005) 327–336. [CrossRef] [Google Scholar]
  4. L.J. Álvarez-Vázquez, A. Martínez, R. Muñoz-Sola, C. Rodríguez and M.E. Vázquez-Méndez, The water conveyance problem: Optimal purification of polluted waters. Math. Models Meth. Appl. Sci. 15 (2005) 1393–1416. [CrossRef] [Google Scholar]
  5. A. Bermúdez, Numerical modelling of water pollution problems, in Environment, Economics and their Mathematical Models, J.I. Diaz and J.L. Lions Eds., Masson, Paris (1994). [Google Scholar]
  6. A. Bermúdez, C. Rodríguez and M.A. Vilar, Solving shallow water equations by a mixed implicit finite element method. IMA J. Num. Anal. 11 (1991) 79–97. [CrossRef] [Google Scholar]
  7. E. Casas, Pontryagin's principle for state constrained boundary control problems of semilinear parabolic equations. SIAM J. Control Optim. 35 (1997) 1297–1327. [CrossRef] [MathSciNet] [Google Scholar]
  8. R. Gibbons, A Primer in Game Theory. Pearson Higher Education (1992). [Google Scholar]
  9. O.A. Ladyzenskaja, V.A. Solonnikov and N.N. Ural'ceva, Linear and quasilinear equations of parabolic type, in Translations of Mathematical Monographs 23, Amer. Math. Soc., Providence (1968). [Google Scholar]
  10. J.L. Lions, Contrôle optimal des systèmes gouvernés par des équations aux derivées partielles. Dunod, Paris (1968). [Google Scholar]
  11. J.L. Lions and E. Magenes, Problèmes aux limites non homogenes et applications. Dunod, Paris (1968). [Google Scholar]
  12. A. Martínez, C. Rodríguez and M.E. Vázquez-Méndez, Theoretical and numerical analysis of an optimal control problem related to wastewater treatment. SIAM J. Control Optim. 38 (2000) 1534–1553. [CrossRef] [MathSciNet] [Google Scholar]
  13. D. Parra-Guevara and YN. Skiba, Elements of the mathematical modeling in the control of pollutants emissions. Ecol. Model. 167 (2003) 263–275. [CrossRef] [Google Scholar]
  14. O. Pironneau, Finite Element Methods for Fluids. J. Wiley & Sons, Chichester (1989). [Google Scholar]
  15. A.M. Ramos, R. Glowinski and J. Periaux, Nash equilibria for the multiobjetive control of linear partial differential equations. J. Optim. Theory Appl. 112 (2002) 457–498. [CrossRef] [MathSciNet] [Google Scholar]
  16. E. Zeidler, Nonlinear Functional Analysis and its Applications. Springer-Verlag (1993). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.