Free Access
Volume 15, Number 4, October-December 2009
Page(s) 863 - 871
Published online 19 July 2008
  1. R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). [Google Scholar]
  2. J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal. 63 (1977) 337–403. [Google Scholar]
  3. J.M. Ball, Minimizers and Euler-Lagrange Equations, in Proceedings of I.S.I.M.M. Conf. Paris, Springer-Verlag (1983). [Google Scholar]
  4. J.M. Ball, Some open problems in elasticity, in Geometry, Mechanics and Dynamics, P. Newton, P. Holmes and A. Weinstein Eds., Springer-Verlag (2002) 3–59. [Google Scholar]
  5. P. Bauman, N.C. Owen and D. Phillips, Maximum principles and a priori estimates for a class of problems from nonlinear elasticity. Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991) 119–157. [Google Scholar]
  6. P. Bauman, D. Phillips and N.C. Owen, Maximal smoothness of solutions to certain Euler-Lagrange equations from nonlinear elasticity. Proc. Royal Soc. Edinburgh 119A (1991) 241–263. [Google Scholar]
  7. P.G. Ciarlet, Mathematical Elasticity Volume I: Three-Dimensional Elasticity. Elsevier Science Publishers, Amsterdam (1988). [Google Scholar]
  8. B. Dacorogna, Direct Methods in the Calculus of Variations. Springer-Verlag, New York (1989). [Google Scholar]
  9. G. Dal Maso, I. Fonseca, G. Leoni and M. Morini, Higher-order quasiconvexity reduces to quasiconvexity. Arch. Rational Mech. Anal. 171 (2004) 55–81. [CrossRef] [Google Scholar]
  10. E. Giusti, Direct Methods in the Calculus of Variations. World Scientific, New Jersey (2003). [Google Scholar]
  11. E.L. Montes-Pizarro and P.V. Negron-Marrero, Local bifurcation analysis of a second gradient model for deformations of a rectangular slab. J. Elasticity 86 (2007) 173–204. [CrossRef] [MathSciNet] [Google Scholar]
  12. J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques. Masson, Paris (1967). [Google Scholar]
  13. X. Yan, Maximal smoothness for solutions to equilibrium equations in 2D nonlinear elasticity. Proc. Amer. Math. Soc. 135 (2007) 1717–1724. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.