Free Access
Volume 15, Number 4, October-December 2009
Page(s) 839 - 862
Published online 19 July 2008
  1. A.A. Agrachev, Exponential mappings for contact sub-Riemannian structures. J. Dyn. Contr. Syst. 2 (1996) 321–358. [Google Scholar]
  2. A.A. Agrachev and Yu.L. Sachkov, Control Theory from the Geometric Viewpoint. Berlin, Springer-Verlag (2004). [Google Scholar]
  3. V.I. Arnold, Geometric Methods in the Theory of Ordinary Differential Equations. Berlin, Springer-Verlag (1988). [Google Scholar]
  4. V.I. Arnold, Ordinary differential equations. Berlin, Springer-Verlag (1992). [Google Scholar]
  5. A. BellaFormula che, The tangent space in sub-Riemannian geometry. Progress in Mathematics 144 (1996) 1–78. [Google Scholar]
  6. J.-H. Cheng and J.-F. Hwang, Properly embedded and immersed minimal surfaces in the Heisenberg group. Bull. Austral. Math. Soc. 70 (2004) 507–520. [CrossRef] [MathSciNet] [Google Scholar]
  7. J.-H. Cheng, J.-F. Hwang, A. Malchiodi and P. Yang, Minimal surfaces in pseudohermitian geometry. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 4 (2005) 129–177. [Google Scholar]
  8. J.-H. Cheng, J.-F. Hwang and P. Yang, Existence and uniqueness for p-area minimizers in the Heisenberg group. Math. Ann. 337 (2007) 253–293. [CrossRef] [MathSciNet] [Google Scholar]
  9. G. Citti and A. Sarti, A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vision 24 (2006) 307–326. [Google Scholar]
  10. B. Franchi, R. Serapioni and F. Serra Cassano, Rectifiability and perimeter in the Heisenberg group. Math. Ann. 321 (2001) 479–531. [CrossRef] [MathSciNet] [Google Scholar]
  11. N. Garofalo and D.-M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces. Comm. Pure Appl. Math. 49 (1996) 479–531. [Google Scholar]
  12. N. Garofalo and S. Pauls, The Bernstein problem in the Heisenberg group. Preprint (2004) arXiv:math/0209065v2. [Google Scholar]
  13. R. Hladky and S. Pauls, Minimal surfaces in the roto-translational group with applications to a neuro-biological image completion model. Preprint (2005) arXiv:math/0509636v1. [Google Scholar]
  14. R. Montgomery, A tour of subriemannian geometries, their geodesics and applications. Providence, R.I. American Mathematical Society (2002). [Google Scholar]
  15. S. Pauls, Minimal surfaces in the Heisenberg group. Geom. Dedicata 104 (2004) 201–231. [CrossRef] [MathSciNet] [Google Scholar]
  16. M. Ritoré and C. Rosales, Rotationally invariant hypersurfaces with constant mean curvature in the Heisenberg group Formula . J. Geom. Anal. 16 (2006) 703–720. [MathSciNet] [Google Scholar]
  17. H. Whitney, The general type of singularity of a set of Formula smooth functions of n variables. Duke Math. J. 10 (1943) 161–172. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.