Free Access
Issue |
ESAIM: COCV
Volume 15, Number 4, October-December 2009
|
|
---|---|---|
Page(s) | 872 - 894 | |
DOI | https://doi.org/10.1051/cocv:2008053 | |
Published online | 20 August 2008 |
- H. Atsumi, Neoclassical growth and the efficient program of capital accumulation. Rev. Econ. Studies 32 (1965) 127–136. [CrossRef] [Google Scholar]
- L. Cesari, Optimization – theory and applications. Springer-Verlag, New York (1983). [Google Scholar]
- D. Gale, On optimal development in a multi-sector economy. Rev. Econ. Studies 34 (1967) 1–18. [CrossRef] [Google Scholar]
- M. Giaquinta and E. Guisti, On the regularity of the minima of variational integrals. Acta Math. 148 (1982) 31–46. [CrossRef] [MathSciNet] [Google Scholar]
- A. Leizarowitz, Infinite horizon autonomous systems with unbounded cost. Appl. Math. Opt. 13 (1985) 19–43. [CrossRef] [Google Scholar]
- A. Leizarowitz and V.J. Mizel, One dimensional infinite horizon variational problems arising in continuum mechanics. Arch. Rational Mech. Anal. 106 (1989) 161–194. [Google Scholar]
- M. Marcus and A.J. Zaslavski, The structure of extremals of a class of second order variational problems. Ann. Inst. H. Poincaré Anal. Non Linéaire 16 (1999) 593–629. [CrossRef] [MathSciNet] [Google Scholar]
- L.W. McKenzie Classical general equilibrium theory. The MIT press, Cambridge, Massachusetts, USA (2002). [Google Scholar]
- J. Moser, Minimal solutions of variational problems on a torus. Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (1986) 229–272. [Google Scholar]
- P.H. Rabinowitz and E. Stredulinsky, On some results of Moser and of Bangert. Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004) 673–688. [CrossRef] [MathSciNet] [Google Scholar]
- P.H. Rabinowitz and E. Stredulinsky, On some results of Moser and of Bangert. II. Adv. Nonlinear Stud. 4 (2004) 377–396. [MathSciNet] [Google Scholar]
- R.T. Rockafellar, Convex analysis. Princeton University Press, Princeton, USA (1970). [Google Scholar]
- P.A. Samuelson, A catenary turnpike theorem involving consumption and the golden rule. Am. Econ. Rev. 55 (1965) 486–496. [Google Scholar]
- C.C. von Weizsacker, Existence of optimal programs of accumulation for an infinite horizon. Rev. Econ. Studies 32 (1965) 85–104. [CrossRef] [Google Scholar]
- A.J. Zaslavski, Optimal programs on infinite horizon 1. SIAM J. Contr. Opt. 33 (1995) 1643–1660. [CrossRef] [Google Scholar]
- A.J. Zaslavski, Optimal programs on infinite horizon 2. SIAM J. Contr. Opt. 33 (1995) 1661–1686. [CrossRef] [Google Scholar]
- A.J. Zaslavski, Turnpike properties in the calculus of variations and optimal control. Springer, New York (2006). [Google Scholar]
- A.J. Zaslavski, Structure of extremals of autonomous convex variational problems. Nonlinear Anal. Real World Appl. 8 (2007) 1186–1207. [CrossRef] [MathSciNet] [Google Scholar]
- A.J. Zaslavski, A turnpike result for a class of problems of the calculus of variations with extended-valued integrands. J. Convex Analysis (to appear). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.