Free Access
Issue
ESAIM: COCV
Volume 16, Number 1, January-March 2010
Page(s) 1 - 22
DOI https://doi.org/10.1051/cocv:2008060
Published online 21 October 2008
  1. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York (2000). [Google Scholar]
  2. J.M. Ball, A version of the fundamental theorem for Young measures, in PDEs and continuum models of phase transitions (Nice, 1988), M. Rascle, D. Serre and M. Slemrod Eds., Springer, Berlin (1989) 207–215. [Google Scholar]
  3. J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100 (1987) 13–52. [Google Scholar]
  4. S. Conti and M. Ortiz, Dislocation microstructures and the effective behavior of single crystals. Arch. Ration. Mech. Anal. 176 (2005) 103–147. [CrossRef] [MathSciNet] [Google Scholar]
  5. G. Dal Maso, A. DeSimone, M.G. Mora and M. Morini, A vanishing viscosity approach to quasistatic evolution in plasticity with softening. Technical report, Scuola Normale Superiore, Pisa (2006). [Google Scholar]
  6. G. Dal Maso, A. DeSimone, M.G. Mora and M. Morini, Time-dependent systems of generalized Young measures. Netw. Heterog. Media 2 (2007) 1–36 (electronic). [Google Scholar]
  7. R.J. DiPerna and A.J. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations. Comm. Math. Phys. 108 (1987) 667–689. [CrossRef] [MathSciNet] [Google Scholar]
  8. R. Engelking, General topology. Translated from the Polish by the author, Monografie Matematyczne 60 [Mathematical Monographs]. PWN – Polish Scientific Publishers, Warsaw (1977). [Google Scholar]
  9. L.C. Evans, Partial differential equations, Graduate Studies in Mathematics 19. American Mathematical Society, Providence, USA (1998). [Google Scholar]
  10. L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics. CRC Press, Boca Raton, USA (1992). [Google Scholar]
  11. G.B. Folland, Real Analysis: Modern Techniques and Their Applications, Pure and Applied Mathematics. John Wiley & Sons Inc., New York, first edition (1999); Wiley-Interscience, second edition. [Google Scholar]
  12. G. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies. J. Reine Angew. Math. 595 (2006) 55–91. [CrossRef] [MathSciNet] [Google Scholar]
  13. A. Kałamajska and M. Kružík, Oscillations and concentrations in sequences of gradients. ESAIM: COCV 14 (2008) 71–104. [CrossRef] [EDP Sciences] [Google Scholar]
  14. M. Kružík and T. Roubíček, On the measures of DiPerna and Majda. Math. Bohem. 122 (1997) 383–399. [Google Scholar]
  15. A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems. Calc. Var. Partial Differential Equations 22 (2005) 73–99. [Google Scholar]
  16. A. Mielke, Evolution of rate-independent systems, in Evolutionary equations II, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam (2005) 461–559. [Google Scholar]
  17. A. Mielke and T. Roubíček, A rate-independent model for inelastic behavior of shape-memory alloys. Multiscale Model. Simul. 1 (2003) 571–597 (electronic). [Google Scholar]
  18. A. Mielke, F. Theil and V.I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Ration. Mech. Anal. 162 (2002) 137–177. [Google Scholar]
  19. M. Ortiz and E.A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47 (1999) 397–462. [Google Scholar]
  20. T. Roubíček, Relaxation in optimization theory and variational calculus, de Gruyter Series in Nonlinear Analysis and Applications 4. Walter de Gruyter & Co., Berlin (1997). [Google Scholar]
  21. M.E. Schonbek, Convergence of solutions to nonlinear dispersive equations. Comm. Partial Differential Equations 7 (1982) 959–1000. [Google Scholar]
  22. J. Souček, Spaces of functions on domain Formula , whose Formula -th derivatives are measures defined on Formula . Časopis Pěst. Mat. 97 (1972) 10–46. [Google Scholar]
  23. L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear analysis and mechanics: Heriot-Watt Symposium IV, Pitman, Boston, USA (1979) 136–212. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.