Free Access
Volume 16, Number 1, January-March 2010
Page(s) 23 - 36
Published online 21 October 2008
  1. L. Almeida and F. Bethuel, Topological methods for the Ginzburg-Landau equations. J. Math. Pures. Appl. 77 (1998) 1–49. [Google Scholar]
  2. F. Bethuel, H. Brezis and F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional. Cal. Var. Partial Differ. Equ. 1 (1993) 123–148. [Google Scholar]
  3. A. Bonnet, S.J. Chapman and R. Monneau, Convergence of Meissner minimizers of the Ginzburg-Landau energy of superconductivity as κ → +∞. SIAM J. Math. Anal. 31 (2000) 1374–1395. [CrossRef] [MathSciNet] [Google Scholar]
  4. K. Choe and H.-S. Nam, Existence and uniqueness of topological multivortex solutions of the self-dual Chern-Simons CP(1) model. Nonlinear Anal. 66 (2007) 2794–2813. [CrossRef] [MathSciNet] [Google Scholar]
  5. M. Kurzke and D. Spirn, Gamma limit of the nonself-dual Chern-Simons-Higgs energy. J. Funct. Anal. 244 (2008) 535–588. [CrossRef] [Google Scholar]
  6. M. Kurzke and D. Spirn, Scaling limits of the Chern-Simons-Higgs energy. Commun. Contemp. Math. 10 (2008) 1–16. [CrossRef] [MathSciNet] [Google Scholar]
  7. F. Pacard and T. Rivière, Linear and nonlinear aspects of vortices. The Ginzburg-Landau model. Progress in Nonlinear Differential Equations and their Applications 39. Birkhäuser Boston, Inc., Boston, MA, USA (2000). [Google Scholar]
  8. E. Sandier and S. Serfaty, Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field. Ann. Inst. H. Poincaré, Anal. Non Linéaire 17 (2000) 119–145. [Google Scholar]
  9. S. Serfaty, Stable configurations in superconductivity: Uniqueness, mulitplicity, and vortex-nucleation. Arch. Rational Mech. Anal. 149 (1999) 329–365. [CrossRef] [Google Scholar]
  10. D. Spirn and X. Yan, Minimizers near the first critical field for the nonself-dual Chern-Simons-Higgs energy. Calc. Var. Partial Differ. Equ. (to appear). [Google Scholar]
  11. G. Tarantello, Uniqueness of selfdual periodic Chern-Simons vortices of topological-type. Calc. Var. Partial Differ. Equ. 29 (2007) 191–217. [CrossRef] [Google Scholar]
  12. D. Ye and F. Zhou, Uniqueness of solutions of the Ginzburg-Landau problem. Nonlinear Anal. 26 (1996) 603–612. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.