Free Access
Issue
ESAIM: COCV
Volume 16, Number 1, January-March 2010
Page(s) 58 - 76
DOI https://doi.org/10.1051/cocv:2008061
Published online 21 October 2008
  1. O. Alvarez and M. Bardi, Singular perturbations of nonlinear degenerate parabolic PDEs: a general convergence result. Arch. Ration. Mech. Anal. 170 (2003) 17–61. [CrossRef] [MathSciNet] [Google Scholar]
  2. M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkhäuser Boston Inc., Boston, MA, USA (1997). [Google Scholar]
  3. G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi. Springer-Verlag, Paris, France (1994). [Google Scholar]
  4. G. Barles, Some homogenization results for non-coercive Hamilton-Jacobi equations. Calc. Var. Partial Differential Equations 30 (2007) 449–466. [CrossRef] [Google Scholar]
  5. G. Barles, S. Biton and O. Ley, A geometrical approach to the study of unbounded solutions of quasilinear parabolic equations. Arch. Ration. Mech. Anal. 162 (2002) 287–325. [CrossRef] [Google Scholar]
  6. F. Camilli and P. Loreti, Comparison results for a class of weakly coupled systems of eikonal equations. Hokkaido Math. J. 37 (2008) 349–362. [Google Scholar]
  7. I. Capuzzo-Dolcetta and H. Ishii, On the rate of convergence in homogenization of Hamilton-Jacobi equations. Indiana Univ. Math. J. 50 (2001) 1113–1129. [Google Scholar]
  8. M.C. Concordel, Periodic homogenization of Hamilton-Jacobi equations: additive eigenvalues and variational formula. Indiana Univ. Math. J. 45 (1996) 1095–1117. [Google Scholar]
  9. A. Eizenberg and M. Freidlin, On the Dirichlet problem for a class of second order PDE systems with small parameter. Stochastics Stochastics Rep. 33 (1990) 111–148. [Google Scholar]
  10. H. Engler and S.M. Lenhart, Viscosity solutions for weakly coupled systems of Hamilton-Jacobi equations. Proc. London Math. Soc. (3) 63 (1991) 212–240. [CrossRef] [MathSciNet] [Google Scholar]
  11. L.C. Evans, The perturbed test function method for viscosity solutions of nonlinear PDE. Proc. Roy. Soc. Edinburgh Sect. A 111 (1989) 359–375 [Google Scholar]
  12. H. Ishii, Perron's method for monotone systems of second-order elliptic partial differential equations. Differential Integral Equations 5 (1992) 1–24. [Google Scholar]
  13. H. Ishii and S. Koike, Remarks on elliptic singular perturbation problems. Appl. Math. Optim. 23 (1991) 1–15. [CrossRef] [Google Scholar]
  14. H. Ishii and S. Koike, Viscosity solutions for monotone systems of second-order elliptic PDEs. Comm. Partial Differential Equations 16 (1991) 1095–1128. [Google Scholar]
  15. P.-L. Lions and P.E. Souganidis, Correctors for the homogenization of Hamilton-Jacobi equations in the stationary ergodic setting. Comm. Pure Appl. Math. 56 (2003) 1501–1524. [CrossRef] [MathSciNet] [Google Scholar]
  16. P.-L. Lions, B. Papanicolaou and S.R.S. Varadhan, Homogenization of Hamilton-Jacobi equations. Preprint (1986). [Google Scholar]
  17. K. Shimano, Homogenization and penalization of functional first-order PDE. NoDEA Nonlinear Differ. Equ. Appl. 13 (2006) 1–21. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.