Free Access
Issue
ESAIM: COCV
Volume 16, Number 1, January-March 2010
Page(s) 194 - 205
DOI https://doi.org/10.1051/cocv:2008069
Published online 19 December 2008
  1. M.S. Ashbaugh, E.M. Harrell and R. Svirsky, On minimal and maximal eigenvalue gaps and their causes. Pacific J. Math. 147 (1991) 1–24. [Google Scholar]
  2. D. Bucur and G. Buttazzo, Variational Methods in Shape Optimization Problems, Progress in Nonlinear Differential Equations and Their Applications 65. Birkhäuser, Basel, Boston (2005). [Google Scholar]
  3. D. Bucur and T. Chatelain, Strict monotonicity of the second eigenvalue of the Laplace operator on relaxed domain. Bull. Appl. Comp. Math. 1510–1566 (1998) 115–122. [Google Scholar]
  4. D. Bucur and A. Henrot, Minimization of the third eigenvalue of the Dirichlet Laplacian. Proc. Roy. Soc. London 456 (2000) 985–996. [CrossRef] [Google Scholar]
  5. G. Buttazzo and G. Dal Maso, Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions. Appl. Math. Optim. 23 (1991) 17–49. [CrossRef] [MathSciNet] [Google Scholar]
  6. G. Buttazzo, N. Varchon and H. Zoubairi, Optimal measures for elliptic problems. Annali Mat. Pur. Appl. 185 (2006) 207–221. [CrossRef] [MathSciNet] [Google Scholar]
  7. R. Courant and D. Hilbert, Methods of Mathematical Physics. Interscience Publishers (1953). [Google Scholar]
  8. G. Dal Maso, Γ-convergence and µ-capacities. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987) 423–464. [MathSciNet] [Google Scholar]
  9. G. Dal Maso, An introduction to Γ-convergence. Birkhäuser, Boston (1993). [Google Scholar]
  10. G. Dal Maso and U. Mosco, Wiener's criterion and Γ-convergence. Appl. Math. Optim. 15 (1987) 15–63. [CrossRef] [MathSciNet] [Google Scholar]
  11. L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics. CRC Press, Boca Raton (1992). [Google Scholar]
  12. A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators. Birkhäuser Verlag, Basel, Boston, Berlin (2006). [Google Scholar]
  13. T. Kato, Perturbation Theory for Linear Operators. Springer-Verlag (1980). [Google Scholar]
  14. N. Varchon, Optimal measures for nonlinear cost functionals. Appl. Mat. Opt. 54 (2006) 205–221. [CrossRef] [MathSciNet] [Google Scholar]
  15. W.P. Ziemer, Weakly Differentiable Functions. Springer-Verlag, Berlin (1989). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.