Free Access
Issue
ESAIM: COCV
Volume 16, Number 1, January-March 2010
Page(s) 206 - 220
DOI https://doi.org/10.1051/cocv:2008070
Published online 19 December 2008
  1. F. Brock, V. Ferone and B. Kawohl, A symmetry problem in the calculus of variations. Calc. Var. 4 (1996) 593–599. [Google Scholar]
  2. G. Buttazzo and P. Guasoni, Shape optimization problems over classes of convex domains. J. Convex Anal. 4 (1997) 343–351. [Google Scholar]
  3. G. Buttazzo and B. Kawohl, On Newton's problem of minimal resistance. Math. Intell. 15 (1993) 7–12. [CrossRef] [Google Scholar]
  4. G. Buttazzo, V. Ferone and B. Kawohl, Minimum problems over sets of concave functions and related questions. Math. Nachr. 173 (1995) 71–89. [CrossRef] [MathSciNet] [Google Scholar]
  5. M. Comte and T. Lachand-Robert, Newton's problem of the body of minimal resistance under a single-impact assumption. Calc. Var. 12 (2001) 173–211. [Google Scholar]
  6. M. Comte and T. Lachand-Robert, Existence of minimizers for Newton's problem of the body of minimal resistance under a single-impact assumption. J. Anal. Math. 83 (2001) 313–335. [CrossRef] [Google Scholar]
  7. T. Lachand-Robert and E. Oudet, Minimizing within convex bodies using a convex hull method. SIAM J. Optim. 16 (2006) 368–379. [CrossRef] [Google Scholar]
  8. T. Lachand-Robert and M.A. Peletier, Newton's problem of the body of minimal resistance in the class of convex developable functions. Math. Nachr. 226 (2001) 153–176. [CrossRef] [Google Scholar]
  9. T. Lachand-Robert and M.A. Peletier, An example of non-convex minimization and an application to Newton's problem of the body of least resistance. Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001) 179–198. [Google Scholar]
  10. I. Newton, Philosophiae naturalis principia mathematica (1686). [Google Scholar]
  11. A.Yu. Plakhov, Newton's problem of a body of minimal aerodynamic resistance. Dokl. Akad. Nauk 390 (2003) 314–317. [Google Scholar]
  12. A.Yu. Plakhov, Newton's problem of the body of minimal resistance with a bounded number of collisions. Russ. Math. Surv. 58 (2003) 191–192. [CrossRef] [Google Scholar]
  13. A. Plakhov and D. Torres, Newton's aerodynamic problem in media of chaotically moving particles. Sbornik: Math. 196 (2005) 885–933. [CrossRef] [Google Scholar]
  14. V.M. Tikhomirov, Newton's aerodynamical problem. Kvant 5 (1982) 11–18 [in Russian]. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.