Free Access
Issue
ESAIM: COCV
Volume 16, Number 4, October-December 2010
Page(s) 856 - 886
DOI https://doi.org/10.1051/cocv/2009022
Published online 31 July 2009
  1. F. Alouges, T. Rivière and S. Serfaty, Néel and cross-tie wall energies for planar micromagnetic configurations. ESAIM: COCV 8 (2002) 31–68. [CrossRef] [EDP Sciences] [Google Scholar]
  2. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs. Oxford University Press, New York (2000). [Google Scholar]
  3. A. DeSimone, S. Müller, R.V. Kohn and F. Otto, Recent analytical developments in micromagnetics, in The Science of Hysteresis 2, G. Bertotti and I. Mayergoyz Eds., Elsevier Academic Press (2005) 269–381. [Google Scholar]
  4. A. Hubert and R. Schäfer, Magnetic domains. Springer (1998). [Google Scholar]
  5. W. Jin and R.V. Kohn, Singular perturbation and the energy of folds. J. Nonlinear Sci. 10 (2000) 355–390. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Poliakovsky, Upper bounds for singular perturbation problems involving gradient fields. J. Eur. Math. Soc. 9 (2007) 1–43. [CrossRef] [Google Scholar]
  7. A. Poliakovsky, Sharp upper bounds for a singular perturbation problem related to micromagnetics. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 6 (2007) 673–701. [Google Scholar]
  8. A. Poliakovsky, A general technique to prove upper bounds for singular perturbation problems. J. Anal. Math. 104 (2008) 247–290. [CrossRef] [MathSciNet] [Google Scholar]
  9. A. Poliakovsky, On a variational approach to the Method of Vanishing Viscosity for Conservation Laws. Adv. Math. Sci. Appl. 18 (2008) 429–451. [MathSciNet] [Google Scholar]
  10. T. Rivière and S. Serfaty, Limiting domain wall energy for a problem related to micromagnetics. Comm. Pure Appl. Math. 54 (2001) 294–338. [CrossRef] [MathSciNet] [Google Scholar]
  11. T. Rivière and S. Serfaty, Compactness, kinetic formulation and entropies for a problem related to mocromagnetics. Comm. Partial Differential Equations 28 (2003) 249–269. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.