Free Access
Volume 16, Number 4, October-December 2010
Page(s) 833 - 855
Published online 31 July 2009
  1. R. Alicandro and C. Leone, 3D-2D asymptotic analysis for micromagnetic energies. ESAIM: COCV 6 (2001) 489–498. [CrossRef] [EDP Sciences] [Google Scholar]
  2. L. Ambrosio and G. Dal Maso, On the relaxation in Formula of quasiconvex integrals. J. Funct. Anal. 109 (1992) 76–97. [Google Scholar]
  3. J.-F. Babadjian and V. Millot, Homogenization of variational problems in manifold valued Formula -spaces. Calc. Var. Part. Diff. Eq. 36 (2009) 7–47. [Google Scholar]
  4. F. Béthuel, The approximation problem for Sobolev maps between two manifolds. Acta Math. 167 (1991) 153–206. [Google Scholar]
  5. F. Béthuel and X. Zheng, Density of smooth functions between two manifolds in Sobolev spaces. J. Funct. Anal. 80 (1988) 60–75. [Google Scholar]
  6. F. Béthuel, H. Brézis and J.M. Coron, Relaxed energies for harmonic maps, in Variational methods, Paris (1988), H. Berestycki, J.M. Coron and I. Ekeland Eds., Progress in Nonlinear Differential Equations and Their Applications 4, Birkhäuser, Boston (1990) 37–52. [Google Scholar]
  7. A. Braides, Homogenization of some almost periodic coercive functional. Rend. Accad. Naz. Sci. XL 103 (1985) 313–322. [Google Scholar]
  8. A. Braides and A. Defranceschi, Homogenization of multiple integrals, Oxford Lecture Series in Mathematics and its Applications 12. Oxford University Press, New York (1998). [Google Scholar]
  9. A. Braides, A. Defranceschi and E. Vitali, Homogenization of free discontinuity problems. Arch. Rational Mech. Anal. 135 (1996) 297–356. [CrossRef] [MathSciNet] [Google Scholar]
  10. H. Brézis, J.M. Coron and E.H. Lieb, Harmonic maps with defects. Comm. Math. Phys. 107 (1986) 649–705. [CrossRef] [MathSciNet] [Google Scholar]
  11. B. Dacorogna, Direct methods in the calculus of variations. Springer-Verlag (1989). [Google Scholar]
  12. B. Dacorogna, I. Fonseca, J. Malý and K. Trivisa, Manifold constrained variational problems. Calc. Var. Part. Diff. Eq. 9 (1999) 185–206. [Google Scholar]
  13. G. Dal Maso, An Introdution to Γ-convergence. Birkhäuser, Boston (1993). [Google Scholar]
  14. I. Ekeland and R. Temam, Analyse convexe et problèmes variationnels. Dunod, Gauthiers-Villars, Paris (1974). [Google Scholar]
  15. I. Fonseca and S. Müller, Quasiconvex integrands and lower semicontinuity in L1. SIAM J. Math. Anal. 23 (1992) 1081–1098. [CrossRef] [MathSciNet] [Google Scholar]
  16. I. Fonseca and S. Müller, Relaxation of quasiconvex functionals in Formula for integrands Formula . Arch. Rational Mech. Anal. 123 (1993) 1–49. [Google Scholar]
  17. I. Fonseca, S. Müller and P. Pedregal, Analysis of concentration and oscillation effects generated by gradients. SIAM J. Math. Anal. 29 (1998) 736–756. [CrossRef] [MathSciNet] [Google Scholar]
  18. M. Giaquinta, L. Modica and J. Souček, Cartesian currents in the calculus of variations, Modern surveys in Mathematics 37-38. Springer-Verlag, Berlin (1998). [Google Scholar]
  19. M. Giaquinta, L. Modica and D. Mucci, The relaxed Dirichlet energy of manifold constrained mappings. Adv. Calc. Var. 1 (2008) 1–51. [CrossRef] [MathSciNet] [Google Scholar]
  20. P. Marcellini, Periodic solutions and homogenization of nonlinear variational problems. Ann. Mat. Pura Appl. (4) 117 (1978) 139–152. [Google Scholar]
  21. S. Müller, Homogenization of nonconvex integral functionals and cellular elastic materials. Arch. Rational Mech. Anal. 99 (1987) 189–212. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.