Free Access
Issue
ESAIM: COCV
Volume 16, Number 4, October-December 2010
Page(s) 1002 - 1017
DOI https://doi.org/10.1051/cocv/2009030
Published online 11 August 2009
  1. E. Acerbi and N. Fusco, A regularity theorem for minimizers of quasiconvex integrals. Arch. Ration. Mech. Anal. 99 (1987) 261–281. [Google Scholar]
  2. E. Acerbi and N. Fusco, Regularity of minimizers of non-quadratic functionals: the case Formula . J. Math. Anal. Appl. 140 (1989) 115–135. [CrossRef] [MathSciNet] [Google Scholar]
  3. R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). [Google Scholar]
  4. M. Carozza and A. Passarelli di Napoli, A regularity theorem for minimizers of quasiconvex integrals: the case Formula . Proc. R. Math. Soc. Edinb. A 126 (1996) 1181–1199. [Google Scholar]
  5. M. Carozza and A. Passarelli di Napoli, Model problems from nonlinear elasticity: partial regularity results. ESAIM: COCV 13 (2007) 120–134. [CrossRef] [EDP Sciences] [Google Scholar]
  6. M. Carozza, N. Fusco and R. Mingione, Partial regularity of minimizers of quasiconvex integrals with subquadratic growth. Annali di matematica pura e applicata (IV) CLXXV (1998) 141–164. [Google Scholar]
  7. G. Cupini, N. Fusco and R. Petti, Hölder continuity of local minimizers. J. Math. Anal. Appl. 235 (1999) 578–597. [CrossRef] [MathSciNet] [Google Scholar]
  8. E. De Giorgi, Un esempio di estremali discontinue per un problema variazionale di tipo ellittico. Boll. Un. Mat. It. 1 (1968) 135–137. [Google Scholar]
  9. L. Esposito, F. Leonetti and G. Mingione, Higher integrability for minimizers of integral functionals with Formula growth. J. Differ. Equ. 157 (1999) 414–438. [CrossRef] [Google Scholar]
  10. L. Esposito, F. Leonetti and G. Mingione, Regularity results for minimizers of irregular integrals with Formula growth. Forum Math. 14 (2002) 245–272. [CrossRef] [MathSciNet] [Google Scholar]
  11. L. Esposito, F. Leonetti and G. Mingione, Sharp regularity for functionals with Formula growth. J. Differ. Equ. 204 (2004) 5–55. [Google Scholar]
  12. L.C. Evans, Quasiconvexity and partial regularity in the Calculus of Variations. Arch. Ration. Mech. Anal. 95 (1984) 227–252. [Google Scholar]
  13. L.C. Evans and R.F. Gariepy, Blow-up, compactness and partial regularity in the Calculus of Variations. Indiana Univ. Math. J. 36 (1987) 361–371. [CrossRef] [MathSciNet] [Google Scholar]
  14. I. Fonseca and N. Fusco, Regularity results for anisotropic image segmentation models. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 3 (1997) 463–499. [Google Scholar]
  15. I. Fonseca, N. Fusco and P. Marcellini, An existence result for a nonconvex variational problem via regularity. ESAIM: COCV 7 (2002) 69–95. [CrossRef] [EDP Sciences] [Google Scholar]
  16. M. Giaquinta and G. Modica, Remarks on the regularity of minimizers of certain degenerate functionals. Manuscripta Math. 47 (1986) 55–99. [CrossRef] [MathSciNet] [Google Scholar]
  17. E. Giusti, Direct methods in the calculus of variations. World Scientific, River Edge, USA (2003). [Google Scholar]
  18. O. John, J. Malý and J. Stará, Nowhere continuous solutions to elliptic systems. Comm. Math. Univ. Carolin. 30 (1989) 33–43. [Google Scholar]
  19. J. Kristensen and G. Mingione, Non-differentiable functionals and singular sets of minima. C. R. Acad. Sci. Paris Ser. I Math. 340 (2005) 93–98. [Google Scholar]
  20. J. Kristensen and G. Mingione, The singular set of minima of integral functionals. Arch. Ration. Mech. Anal. 180 (2006) 331–398. [CrossRef] [MathSciNet] [Google Scholar]
  21. G. Mingione, The singular set of solutions to non differentiable elliptic systems. Arch. Ration. Mech. Anal. 166 (2003) 287–301. [CrossRef] [Google Scholar]
  22. G. Mingione, Bounds for the singular set of solutions to non linear elliptic system. Calc. Var. 18 (2003) 373–400. [CrossRef] [Google Scholar]
  23. G. Mingione, Regularity of minima: an invitation to the dark side of calculus of variations. Appl. Math. 51 (2006) 355–426. [CrossRef] [MathSciNet] [Google Scholar]
  24. J. Nečas, Example of an irregular solution to a nonlinear elliptic system with analytic coefficients and conditions for regularity, in Theory of nonlinear operators, Proc. Fourth Internat. Summer School, Acad. Sci., Berlin (1975) 197–206. [Google Scholar]
  25. A. Passarelli di Napoli, A regularity result for a class of polyconvex functionals. Ric. di Matem. XLVIII (1994) 379–393. [Google Scholar]
  26. V. Šverák and X. Yan, A singular minimizer of a smooth strongly convex functional in three dimensions. Calc. Var. 10 (2000) 213–221. [CrossRef] [Google Scholar]
  27. V. Šverák and X. Yan, Non Lipschitz minimizers of smooth strongly convex variational integrals. Proc. Nat. Acad. Sc. USA 99 (2002) 15269–15276. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.