Free Access
Issue
ESAIM: COCV
Volume 16, Number 4, October-December 2010
Page(s) 1018 - 1039
DOI https://doi.org/10.1051/cocv/2009031
Published online 11 August 2009
  1. A.A. Agrachev, Exponential mappings for contact sub-Riemannian structures. J. Dyn. Control Syst. 2 (1996) 321–358. [CrossRef] [Google Scholar]
  2. A.A. Agrachev, Geometry of optimal control problems and Hamiltonian systems, in Nonlinear and Optimal Control Theory, Lect. Notes Math. CIME 1932, Springer Verlag (2008) 1–59. [Google Scholar]
  3. A.A. Agrachev and Y.L. Sachkov, Control Theory from the Geometric Viewpoint. Springer-Verlag, Berlin (2004). [Google Scholar]
  4. A.A. Agrachev, U. Boscain, J.P. Gauthier and F. Rossi, The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups. J. Funct. Anal. 256 (2009) 2621–2655. [CrossRef] [MathSciNet] [Google Scholar]
  5. G. Citti and A. Sarti, A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vis. 24 (2006) 307–326. [CrossRef] [MathSciNet] [Google Scholar]
  6. C. El-Alaoui, J.P. Gauthier and I. Kupka, Small sub-Riemannian balls on Formula . J. Dyn. Control Syst. 2 (1996) 359–421. [CrossRef] [Google Scholar]
  7. V. Jurdjevic, Geometric Control Theory. Cambridge University Press (1997). [Google Scholar]
  8. J.P. Laumond, Nonholonomic motion planning for mobile robots, Lecture Notes in Control and Information Sciences 229. Springer (1998). [Google Scholar]
  9. I. Moiseev and Y.L. Sachkov, Maxwell strata in sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV (2009), doi:10.1051/cocv/2009004. [CrossRef] [EDP Sciences] [Google Scholar]
  10. J. Petitot, The neurogeometry of pinwheels as a sub-Riemannian contact structure. J. Physiology – Paris 97 (2003) 265–309. [CrossRef] [PubMed] [Google Scholar]
  11. J. Petitot, Neurogéometrie de la vision – Modèles mathématiques et physiques des architectures fonctionnelles. Éditions de l'École polytechnique, France (2008). [Google Scholar]
  12. L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, The mathematical theory of optimal processes. Wiley Interscience (1962). [Google Scholar]
  13. Y.L. Sachkov, Exponential mapping in generalized Dido's problem. Mat. Sbornik 194 (2003) 63–90 (in Russian). English translation in Sbornik: Mathematics 194 (2003). [CrossRef] [MathSciNet] [Google Scholar]
  14. Y.L. Sachkov, Discrete symmetries in the generalized Dido problem. Matem. Sbornik 197 (2006) 95–116 (in Russian). English translation in Sbornik: Mathematics, 197 (2006) 235–257. [CrossRef] [MathSciNet] [Google Scholar]
  15. Y.L. Sachkov, The Maxwell set in the generalized Dido problem. Matem. Sbornik 197 (2006) 123–150 (in Russian). English translation in Sbornik: Mathematics 197 (2006) 595–621. [Google Scholar]
  16. Y.L. Sachkov, Complete description of the Maxwell strata in the generalized Dido problem. Matem. Sbornik 197 (2006) 111–160 (in Russian). English translation in: Sbornik: Mathematics 197 (2006) 901–950. [Google Scholar]
  17. Y.L. Sachkov, Maxwell strata in Euler's elastic problem. J. Dyn. Control Syst. 14 (2008) 169–234. [CrossRef] [MathSciNet] [Google Scholar]
  18. Y.L. Sachkov, Conjugate points in Euler's elastic problem. J. Dyn. Control Syst. 14 (2008) 409–439. [CrossRef] [MathSciNet] [Google Scholar]
  19. Y.L. Sachkov, Cut locus and optimal synthesis in sub-Riemannian problem on the group of motions of a plane. ESAIM: COCV (submitted). [Google Scholar]
  20. A.V. Sarychev, The index of second variation of a control system. Matem. Sbornik 113 (1980) 464–486 (in Russian). English translation in Math. USSR Sbornik 41 (1982) 383–401. [Google Scholar]
  21. A.M. Vershik and V.Y. Gershkovich, Nonholonomic Dynamical Systems – Geometry of distributions and variational problems (in Russian), in Itogi Nauki i Tekhniki: Sovremennye Problemy Matematiki, Fundamental'nyje Napravleniya 16, VINITI, Moscow (1987) 5–85. English translation in Encyclopedia of Math. Sci. 16, Dynamical Systems 7, Springer Verlag. [Google Scholar]
  22. E.T. Whittaker and G.N. Watson, A Course of Modern Analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of principal transcendental functions. Cambridge University Press, Cambridge (1996). [Google Scholar]
  23. S. Wolfram, Mathematica: a system for doing mathematics by computer. Addison-Wesley, Reading, USA (1991). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.