Free Access
Volume 17, Number 1, January-March 2011
Page(s) 178 - 189
Published online 04 December 2009
  1. E. Acerbi and N. Fusco, Regularity for minimizers of non-quadratic functionals: the case 1<p<2. J. Math. Anal. Appl. 140 (1989) 115–135. [CrossRef] [MathSciNet] [Google Scholar]
  2. E. Acerbi and G. Mingione, Regularity results for a class of functionals with non-standard growth. Arch. Ration. Mech. Anal. 156 (2001) 121–140. [Google Scholar]
  3. E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. 164 (2002) 213–259. [CrossRef] [MathSciNet] [Google Scholar]
  4. M. Chipot and L.C. Evans, Linearization at infinity and Lipschitz estimate for certain problems in the Calculus of Variations. Proc. Roy. Soc. Edinburgh Sect. A 102 (1986) 291–303. [MathSciNet] [Google Scholar]
  5. A. Cianchi, Some results in the theory of Orlicz spaces and applications to variational problems, in Nonlinear Analysis, Function Spaces and Applications 6, Acad. Sci. Czech Repub., Prague, Czech Republic (1999) 50–92. [Google Scholar]
  6. A. Cianchi and N. Fusco, Gradient regularity for minimizers under general growth conditions. J. Reine Angew. Math. 507 (1999) 15–36. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Cupini, M. Guidorzi and E. Mascolo, Regularity of minimizers of vectorial integrals with p-q growth. Nonlinear Anal. 54 (2003) 591–616. [CrossRef] [MathSciNet] [Google Scholar]
  8. L. Diening and F. Ettwein, Fractional estimates for non-differentiable elliptic systems with general growth. Forum Math. 20 (2008) 523–556. [CrossRef] [MathSciNet] [Google Scholar]
  9. L. Diening, B. Stroffolini and A. Verde, Regularity of functionals with ϕ-growth. Manuscripta Math. 129 (2009) 449–481. [CrossRef] [MathSciNet] [Google Scholar]
  10. G. Dolzmann and J. Kristensen, Higher integrability of minimizing Young measures. Calc. Var. Partial Differ. Equ. 22 (2005) 283–301. [CrossRef] [Google Scholar]
  11. M. Foss, Global regularity for almost minimizers of nonconvex variational problems. Ann. Mat. Pura Appl. 187 (2008) 263–321. [CrossRef] [MathSciNet] [Google Scholar]
  12. M. Foss, A. Passarelli di Napoli and A. Verde, Global Morrey regularity results for asymptotically convex variational problems. Forum Math. 20 (2008) 921–953. [CrossRef] [MathSciNet] [Google Scholar]
  13. M. Fuchs, Regularity for a class of variational integrals motivated by nonlinear elasticity. Asymptotic Anal. 9 (1994) 23–38. [MathSciNet] [Google Scholar]
  14. M. Fuchs, Lipschitz regularity for certain problems from relaxation. Asymptotic Anal. 12 (1996) 145–151. [MathSciNet] [Google Scholar]
  15. M. Giaquinta and G. Modica, Remarks on the regularity of the minimizers of certain degenerate functionals. Manuscripta Math. 57 (1986) 55–99. [CrossRef] [MathSciNet] [Google Scholar]
  16. J. Kristensen and A. Taheri, Partial regularity of strong local minimizers in the multi-dimensional calculus of variations. Arch. Ration. Mech. Anal. 170 (2003) 63–89. [Google Scholar]
  17. C. Leone, A. Passarelli di Napoli and A. Verde, Lipschitz regularity for some asymptotically subquadratic problems. Nonlinear Anal. 67 (2007) 1532–1539. [CrossRef] [MathSciNet] [Google Scholar]
  18. P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions. Arch. Ration. Mech. Anal. 105 (1989) 267–284. [Google Scholar]
  19. P. Marcellini, Regularity and existence of solutions of elliptic equations with p,q-growth conditions. J. Diff. Eq. 90 (1991) 1–30. [Google Scholar]
  20. P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Scuola Norm. Pisa 23 (1996) 1–25. [Google Scholar]
  21. P. Marcellini and G. Papi, Nonlinear elliptic systems with general growth. J. Diff. Eq. 221 (2006) 412–443. [Google Scholar]
  22. G.R. Mingione, Regularity of minima: An invitation to the dark side of the calculus of variations. Appl. Math. 51 (2006) 355–426. [CrossRef] [MathSciNet] [Google Scholar]
  23. A. Passarelli di Napoli and A. Verde, A regularity result for asymptotically convex problems with lower order terms. J. Convex Anal. 15 (2008) 131–148. [MathSciNet] [Google Scholar]
  24. J.P. Raymond, Lipschitz regularity of solutions of some asymptotically convex problems Proc. Roy. Soc. Edinburgh Sect. A 117 (1991) 59–73. [Google Scholar]
  25. M. Ružička and L. Diening, Non-Newtonian fluids and function spaces, in Nonlinear Analysis, Function Spaces and Applications 8, Acad. Sci. Czech Repub., Prague, Czech Republic (2007) 95–143. [Google Scholar]
  26. K. Uhlenbeck, Regularity for a class of nonlinear elliptic systems. Acta Math. 138 (1977) 219–240. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.