Free Access
Issue
ESAIM: COCV
Volume 17, Number 1, January-March 2011
Page(s) 155 - 177
DOI https://doi.org/10.1051/cocv/2009040
Published online 30 October 2009
  1. F. Bagagiolo, Minimum time for a hybrid system with thermostatic switchings, in Hybrid Systems: Computation and Control, A. Bemporad, A. Bicchi and G. Buttazzo Eds., Lect. Notes Comput. Sci. 4416, Springer-Verlag, Berlin, Germany (2007) 32–45. [Google Scholar]
  2. F. Bagagiolo and M. Bardi, Singular perturbation of a finite horizon problem with state-space constraints. SIAM J. Contr. Opt. 36 (1998) 2040–2060. [CrossRef] [Google Scholar]
  3. F. Bagagiolo and D. Bauso, Robust optimality of linear saturated control in uncertain linear network flows, in Decision and Control, 2008, CDC 2008, 47th IEEE Conference (2008) 3676–3681. [Google Scholar]
  4. M. Bardi and I. Capuzzo Dolcetta, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser, Boston, USA (1997). [Google Scholar]
  5. M. Bardi, S. Koike and P. Soravia, Pursuit-evasion games with state constraints: dynamic programming and discrete-time approximation. Discrete Contin. Dyn. Syst. 6 (2000) 361–380. [CrossRef] [Google Scholar]
  6. D. Bauso, F. Blanchini and R. Pesenti, Robust control policies for multi-inventory systems with average flow constraints. Automatica 42 (2006) 1255–1266. [CrossRef] [MathSciNet] [Google Scholar]
  7. A. Bemporad, M. Morari, V. Dua and E.N. Pistikopoulos, The explicit linear quadratic regulator for constrained systems. Automatica 38 (2002) 320. [Google Scholar]
  8. A. Ben Tal and A. Nemirovsky, Robust solutions of uncertain linear programs. Oper. Res. 25 (1998) 1–13. [CrossRef] [Google Scholar]
  9. D.P. Bertsekas and I. Rhodes, Recursive state estimation for a set-membership description of uncertainty. IEEE Trans. Automatic Control 16 (1971) 117–128. [CrossRef] [MathSciNet] [Google Scholar]
  10. D. Bertsimas and A. Thiele, A robust optimization approach to inventory theory. Oper. Res. 54 (2006) 150–168. [CrossRef] [MathSciNet] [Google Scholar]
  11. P. Cardialaguet, M. Quincampoix and P. Saint-Pierre, Pursuit differential games with state constraints. SIAM J. Contr. Opt. 39 (2001) 1615–1632. [CrossRef] [MathSciNet] [Google Scholar]
  12. J. Casti, On the general inverse problem of optimal control theory. J. Optim. Theory Appl. 32 (1980) 491–497. [CrossRef] [MathSciNet] [Google Scholar]
  13. X. Chen, M. Sim, P. Sun and J. Zhang, A linear-decision based approximation approach to stochastic programming. Oper. Res. 56 (2008) 344–357. [CrossRef] [MathSciNet] [Google Scholar]
  14. M.G. Crandall, L.C. Evans and P.L. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 282 (1984) 487–502. [CrossRef] [MathSciNet] [Google Scholar]
  15. S. Dharmatti and M. Ramaswamy, Zero-sum differential games involving hybrid controls. J. Optim. Theory Appl. 128 (2006) 75–102. [CrossRef] [MathSciNet] [Google Scholar]
  16. R.J. Elliot and N.J. Kalton, The existence of value in differential games, Mem. Amer. Math. Soc. 126. AMS, Providence, USA (1972). [Google Scholar]
  17. L.C. Evans and H. Ishii, Differential games and nonlinear first order PDE on bounded domains. Manuscripta Math. 49 (1984) 109–139. [CrossRef] [MathSciNet] [Google Scholar]
  18. M. Garavello and P. Soravia, Representation formulas for solutions of HJI equations with discontinuous coefficients and existence of value in differential games. J. Optim. Theory Appl. 130 (2006) 209–229. [CrossRef] [MathSciNet] [Google Scholar]
  19. S. Koike, On the state constraint problem for differential games. Indiana Univ. Math. J. 44 (1995) 467–487. [MathSciNet] [Google Scholar]
  20. O. Kostyukova and E. Kostina, Robust optimal feedback for terminal linear-quadratic control problems under disturbances. Math. Program. 107 (2006) 131–153. [CrossRef] [MathSciNet] [Google Scholar]
  21. V.B. Larin, About the inverse problem of optimal control. Appl. Comput. Math 2 (2003) 90–97. [MathSciNet] [Google Scholar]
  22. T.T. Lee and G.T. Liaw, The inverse problem of linear optimal control for constant disturbance. Int. J. Control 43 (1986) 233–246. [CrossRef] [Google Scholar]
  23. P. Soravia, Boundary value problems for Hamilton-Jacobi equations with discontinuous Lagrangian. Indiana Univ. Math. J. 51 (2002) 451–477. [MathSciNet] [Google Scholar]
  24. H.M. Soner, Optimal control problems with state-space constraints I. SIAM J. Contr. Opt. 31 (1986) 132–146. [CrossRef] [Google Scholar]
  25. A. Visintin, Differential Models of Hysteresis. Springer-Verlag, Berlin, Germany (1996). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.