Free Access
Issue
ESAIM: COCV
Volume 17, Number 2, April-June 2011
Page(s) 472 - 492
DOI https://doi.org/10.1051/cocv/2010016
Published online 23 April 2010
  1. E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86 (1984) 125–145. [Google Scholar]
  2. E. Acerbi and N. Fusco, A regularity theorem for minimizers of quasiconvex integrals. Arch. Ration. Mech. Anal. 99 (1987) 261–281. [Google Scholar]
  3. E. Acerbi and N. Fusco, Regularity for minimizers of non-quadratic functionals: the case 1<p<2. J. Math. Anal. Appl. 140 (1989) 115–135. [CrossRef] [MathSciNet] [Google Scholar]
  4. E. Acerbi and N. Fusco, Partial regularity under anisotropic (p, q) growth conditions. J. Differ. Equ. 107 (1994) 46–67. [CrossRef] [Google Scholar]
  5. E. Acerbi and G. Mingione, Regularity results for a class of quasiconvex functionals with nonstandard growth. Ann. Scuola Norm. Sup. Pisa Cl. Sci. IV 30 (2001) 311–339. [Google Scholar]
  6. J.M. Ball and F. Murat, W1,p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal. 58 (1984) 225–253. [Google Scholar]
  7. M. Bildhauer and M. Fuchs, Partial regularity for variational integrals with (s, µ, q)-growth. Calc. Var. Partial Differ. Equ. 13 (2001) 537–560. [CrossRef] [Google Scholar]
  8. M. Bildhauer and M. Fuchs, C1, α-solutions to non-autonomous anisotropic variational problems. Calc. Var. Partial Differ. Equ. 24 (2005) 309–340. [CrossRef] [Google Scholar]
  9. G. Bouchitté, I. Fonseca and J. Malý, The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent. Proc. Roy. Soc. Edinburgh Sect. A 128 (1998) 463–479. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Carozza and A. Passarelli di Napoli, Partial regularity for anisotropic functionals of higher order. ESAIM: COCV 13 (2007) 692–706. [CrossRef] [EDP Sciences] [Google Scholar]
  11. M. Carozza, N. Fusco and G. Mingione, Partial regularity of minimizers of quasiconvex integrals with subquadratic growth. Ann. Mat. Pura Appl. IV 175 (1998) 141–164. [CrossRef] [MathSciNet] [Google Scholar]
  12. G. Cupini, M. Guidorzi and E. Mascolo, Regularity of minimizers of vectorial integrals with p-q growth. Nonlinear Anal., Theory Methods Appl. 54 (2003) 591–616. [Google Scholar]
  13. F. Duzaar and M. Kronz, Regularity of ω-minimizers of quasi-convex variational integrals with polynomial growth. Differ. Geom. Appl. 17 (2002) 139–152. [CrossRef] [Google Scholar]
  14. F. Duzaar and K. Steffen, Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals. J. Reine Angew. Math. 546 (2002) 73–138. [CrossRef] [MathSciNet] [Google Scholar]
  15. F. Duzaar, A. Gastel and J. Grotowski, Partial regularity for almost minimizers of quasi-convex integrals. SIAM J. Math. Anal. 32 (2000) 665–687. [CrossRef] [MathSciNet] [Google Scholar]
  16. F. Duzaar, J. Grotowski and M. Kronz, Regularity of almost minimizers of quasi-convex variational integrals with subquadratic growth. Ann. Mat. Pura Appl. IV 184 (2005) 421–448. [CrossRef] [MathSciNet] [Google Scholar]
  17. L. Esposito and G. Mingione, Relaxation results for higher order integrals below the natural growth exponent. Differ. Integral Equ. 15 (2002) 671–696. [Google Scholar]
  18. L. Esposito, F. Leonetti and G. Mingione, Regularity results for minimizers of irregular integrals with (p, q) growth. Forum Math. 14 (2002) 245–272. [CrossRef] [MathSciNet] [Google Scholar]
  19. L. Esposito, F. Leonetti and G. Mingione, Sharp regularity for functionals with (p, q) growth. J. Differ. Equ. 204 (2004) 5–55. [Google Scholar]
  20. L.C. Evans, Quasiconvexity and partial regularity in the calculus of variations. Arch. Ration. Mech. Anal. 95 (1986) 227–252. [Google Scholar]
  21. I. Fonseca and J. Malý, Relaxation of multiple integrals below the growth exponent. Ann. Inst. Henri Poincaré Anal. Non Linéaire 14 (1997) 309–338. [Google Scholar]
  22. I. Fonseca and J. Malý, From jacobian to hessian: distributional form and relaxation. Riv. Mat. Univ. Parma 4 (2005) 45–74. [MathSciNet] [Google Scholar]
  23. N. Fusco and J. Hutchinson, C1, α partial regularity of functions minimising quasiconvex integrals. Manuscr. Math. 54 (1984) 121–143. [Google Scholar]
  24. M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems. Princeton University Press, Princeton (1983). [Google Scholar]
  25. M. Giaquinta, Growth conditions and regularity, a counterexample. Manuscr. Math. 59 (1987) 245–248. [CrossRef] [Google Scholar]
  26. M. Giaquinta and G. Modica, Partial regularity of minimizers of quasiconvex integrals. Ann. Inst. Henri Poincaré Anal. Non Linéaire 3 (1986) 185–208. [Google Scholar]
  27. M. Guidorzi, A remark on partial regularity of minimizers of quasiconvex integrals of higher order. Rend. Ist. Mat. Univ. Trieste 32 (2000) 1–24. [Google Scholar]
  28. M. Guidorzi and L. Poggiolini, Lower semicontinuity of quasiconvex integrals of higher order. NoDEA 6 (1999) 227–246. [CrossRef] [MathSciNet] [Google Scholar]
  29. M.C. Hong, Some remarks on the minimizers of variational integrals with non standard growth conditions. Boll. Un. Mat. Ital. A 6 (1992) 91–101. [MathSciNet] [Google Scholar]
  30. J. Kristensen, Lower semicontinuity in Sobolev spaces below the growth exponent of the integrand. Proc. Roy. Soc. Edinburgh Sect. A 127 (1997) 797–817. [MathSciNet] [Google Scholar]
  31. J. Kristensen and G. Mingione, The singular set of lipschitzian minima of multiple integrals. Arch. Ration. Mech. Anal. 184 (2007) 341–369. [CrossRef] [MathSciNet] [Google Scholar]
  32. M. Kronz, Partial regularity results for minimizers of quasiconvex functionals of higher order. Ann. Inst. Henri Poincaré Anal. Non Linéaire 19 (2002) 81–112. [CrossRef] [MathSciNet] [Google Scholar]
  33. P. Marcellini, Approximation of quasiconvex functions and lower semicontinuity of multiple integrals. Manuscr. Math. 51 (1985) 1–28. [CrossRef] [MathSciNet] [Google Scholar]
  34. P. Marcellini, On the definition and the lower semicontinuity of certain quasiconvex integrals. Ann. Inst. Henri Poincaré Anal. Non Linéaire 3 (1986) 391–409. [Google Scholar]
  35. P. Marcellini, Un exemple de solution discontinue d'un problème variationnel dans le cas scalaire. Preprint Istituto Matematico U. Dini, Universita' di Firenze (1987/1988), n. 11. [Google Scholar]
  36. P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with non-standard growth conditions. Arch. Ration. Mech. Anal. 105 (1989) 267–284. [Google Scholar]
  37. P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-growth conditions. J. Differ. Equ. 90 (1991) 1–30. [CrossRef] [MathSciNet] [Google Scholar]
  38. P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Scuola Norm. Sup. Pisa Cl. Sci. IV 23 (1996) 1–25. [Google Scholar]
  39. N.G. Meyers, Quasi-convexity and lower semi-continuity of multiple variational integrals of any order. Trans. Am. Math. Soc. 119 (1965) 125–149. [Google Scholar]
  40. C.B. Morrey, Quasi-convexity and the lower semicontinuity of multiple integrals. Pac. J. Math. 2 (1952) 25–53. [Google Scholar]
  41. A. Passarelli di Napoli and F. Siepe, A regularity result for a class of anisotropic systems. Rend. Ist. Mat. Univ. Trieste 28 (1996) 13–31. [Google Scholar]
  42. S. Schemm and T. Schmidt, Partial regularity of strong local minimizers of quasiconvex integrals with (p, q)-growth. Proc. Roy. Soc. Edinburgh Sect. A 139 (2009) 595–621. [CrossRef] [MathSciNet] [Google Scholar]
  43. T. Schmidt, Regularity of minimizers of W1,p-quasiconvex variational integrals with (p, q)-growth. Calc. Var. Partial Differ. Equ. 32 (2008) 1–24. [CrossRef] [Google Scholar]
  44. T. Schmidt, Regularity of relaxed minimizers of quasiconvex variational integrals with (p, q)-growth. Arch. Ration. Mech. Anal. 193 (2009) 311–337. [CrossRef] [MathSciNet] [Google Scholar]
  45. F. Siepe and M. Guidorzi, Partial regularity for quasiconvex integrals of any order. Ric. Mat. 52 (2003) 31–54. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.