Free Access
Issue
ESAIM: COCV
Volume 17, Number 3, July-September 2011
Page(s) 836 - 857
DOI https://doi.org/10.1051/cocv/2010024
Published online 06 August 2010
  1. S. Adly, H. Attouch and A. Cabot, Finite time stabilization of nonlinear oscillators subject to dry friction – Nonsmooth mechanics and analysis. Adv. Mech. Math. 12 (2006) 289–304. [CrossRef] [Google Scholar]
  2. F. Alvarez, On the minimizing property of a second order dissipative system in Hilbert space. SIAM J. Control Optim. 38 (2000) 1102–1119. [CrossRef] [MathSciNet] [Google Scholar]
  3. F. Alvarez, Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space. SIAM J. Optim. 14 (2004) 773–782. [Google Scholar]
  4. F. Alvarez and H. Attouch, The heavy ball with friction dynamical system for convex constrained minimization problems, in Optimization, Namur (1998), Lecture Notes in Econom. Math. Systems 481, Springer, Berlin (2000) 25–35. [Google Scholar]
  5. F. Alvarez and H. Attouch, An inertial proximal method for monotone operators via discretization of a nonlinear oscillator with damping. Set Valued Anal. 9 (2001) 3–11. [Google Scholar]
  6. F. Alvarez and H. Attouch, Convergence and asymptotic stabilization for some damped hyperbolic equations with non-isolated equilibria. ESAIM: COCV 6 (2001) 539–552. [CrossRef] [EDP Sciences] [Google Scholar]
  7. F. Alvarez, H. Attouch, J. Bolte and P. Redont, A second-order gradient-like dissipative dynamical system with Hessian-driven damping. Application to optimization and mechanics. J. Math. Pures Appl. 81 (2002) 747–779. [CrossRef] [MathSciNet] [Google Scholar]
  8. A.S. Antipin, Minimization of convex functions on convex sets by means of differential equations. Differ. Uravn. 30 (1994) 1475–1486 (in Russian). English translation: Diff. Equ. 30 (1994) 1365–1375. [Google Scholar]
  9. H. Attouch and R. Cominetti, A dynamical approach to convex minimization coupling approximation with the steepest descent method. J. Diff. Equ. 128 (1996) 519–540. [CrossRef] [Google Scholar]
  10. H. Attouch and M.-O. Czarnecki, Asymptotic control and stabilization of nonlinear oscillators with non-isolated equilibria. J. Diff. Equ. 179 (2002) 278–310. [CrossRef] [Google Scholar]
  11. H. Attouch and A. Soubeyran, Inertia and reactivity in decision making as cognitive variational inequalities. J. Convex. Anal. 13 (2006) 207–224. [MathSciNet] [Google Scholar]
  12. H. Attouch, D. Aze and R. Wets, Convergence of convex-concave saddle functions: Applications to convex programming and mechanics. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 5 (1988) 537–572. [Google Scholar]
  13. H. Attouch, X. Goudou and P. Redont, The heavy ball with friction method: The continuous dynamical system. Global exploration of local minima by asymptotic analysis of a dissipative dynamical system. Commun. Contemp. Math. 1 (2000) 1–34. [Google Scholar]
  14. H. Attouch, A. Cabot and P. Redont, The dynamics of elastic shocks via epigraphical regularization of a differential inclusion. Barrier and penalty approximations. Adv. Math. Sci. Appl. 12 (2002) 273–306. [MathSciNet] [Google Scholar]
  15. H. Attouch, J. Bolte, P. Redont and A. Soubeyran, Alternating proximal algorithms for weakly coupled minimization problems. Applications to dynamical games and PDE's. J. Convex Anal. 15 (2008) 485–506. [MathSciNet] [Google Scholar]
  16. J.-B. Baillon and G. Haddad, Quelques propriétés des opérateurs angles-bornés et n-cycliquement monotones. Israel J. Math. 26 (1977) 137–150. [CrossRef] [MathSciNet] [Google Scholar]
  17. J.-B. Baillon and A. Haraux, Comportement à l'infini pour les équations d'évolution avec forcing périodique. Arch. Rat. Mech. Anal. 67 (1977) 101–109. [CrossRef] [Google Scholar]
  18. J. Bolte, Continuous gradient projection method in Hilbert spaces. J. Optim. Theory Appl. 119 (2003) 235–259. [Google Scholar]
  19. J. Bolte and M. Teboulle, Barrier operators and associated gradient-like dynamical systems for constrained minimization problems. SIAM J. Control Optim. 42 (2003) 1266–1292. [CrossRef] [MathSciNet] [Google Scholar]
  20. H. Brézis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Mathematical Studies. North-Holland (1973). [Google Scholar]
  21. A. Cabot, Inertial gradient-like dynamical system controlled by a stabilizing term. J. Optim. Theory Appl. 120 (2004) 275–303. [CrossRef] [MathSciNet] [Google Scholar]
  22. T. Cazenave and A. Haraux, An introduction to semilinear evolution equations, Oxford Lecture Series in Mathematics and its Applications 13. Oxford University Press, Oxford (1998). [Google Scholar]
  23. P.L. Combettes and S.A. Hirstoaga, Visco-penalization of the sum of two operators. Nonlinear Anal. 69 (2008) 579–591. [CrossRef] [MathSciNet] [Google Scholar]
  24. R. Cominetti, J. Peypouquet and S. Sorin, Strong asymptotic convergence of evolution equations governed by maximal monotone operators with Tikhonov regularization. J. Diff. Equ. 245 (2008) 3753–3763. [CrossRef] [Google Scholar]
  25. S. Ervedoza and E. Zuazua, Uniformly exponentially stable approximations for a class of damped systems. J. Math. Pures Appl. 91 (2009) 20–48. [CrossRef] [MathSciNet] [Google Scholar]
  26. S.D. Flam and J. Morgan, Newtonian mechanics and Nash play. Int. Game Theory Rev. 6 (2004) 181–194. [CrossRef] [MathSciNet] [Google Scholar]
  27. I. Gallagher, Asymptotics of the solutions of hyperbolic equations with a skew-symmetric perturbation. J. Diff. Equ. 150 (1998) 363–384. [CrossRef] [MathSciNet] [Google Scholar]
  28. J.K. Hale and G. Raugel, Convergence in gradient-like systems with applications to PDE. Z. Angew. Math. Phys. 43 (1992) 63–125. [CrossRef] [MathSciNet] [Google Scholar]
  29. A. Haraux, Systèmes dynamiques dissipatifs et applications 17. Masson, RMA (1991). [Google Scholar]
  30. J. Hofbauer and S. Sorin, Best response dynamics for continuous zero-sum games. Discrete Continuous Dyn. Syst. Ser. B 6 (2006) 215–224. [Google Scholar]
  31. P.E. Maingé, Regularized and inertial algorithms for common fixed points of nonlinear operators. J. Math. Anal. Appl. 344 (2008) 876–887. [CrossRef] [MathSciNet] [Google Scholar]
  32. D. Monderer and L.S. Shapley, Potential Games. Games Econ. Behav. 14 (1996) 124–143. [CrossRef] [Google Scholar]
  33. Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Amer. Math. Soc. 73 (1967) 591–597. [CrossRef] [MathSciNet] [Google Scholar]
  34. B.T. Polyak, Introduction to Optimization. Optimization Software, New York (1987). [Google Scholar]
  35. R.T. Rockafellar, Monotone operators associated with saddle-functions and mini-max problems, in Nonlinear operators and nonlinear equations of evolution in Banach spaces 2, 18th Proceedings of Symposia in Pure Mathematics, F.E. Browder Ed., American Mathematical Society (1976) 241–250. [Google Scholar]
  36. M. Schatzman, A class of nonlinear differential equations of second order in time. Nonlinear Anal. 2 (1978) 355–373. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.