Free Access
Issue
ESAIM: COCV
Volume 17, Number 3, July-September 2011
Page(s) 654 - 681
DOI https://doi.org/10.1051/cocv/2010022
Published online 23 April 2010
  1. M. Benchohra, J. Henderson and S. Ntouyas, Impulsive Differential Equations and Inclusion. Hindawi Publishing Corporation, New York (2006). [Google Scholar]
  2. R.A.C. Ferreira and D.F.M. Torres, Higher-order calculus of variations on time scales, in Mathematical control theory and finance, Springer, Berlin (2008) 149–159. [Google Scholar]
  3. Y. Gong and X. Xiang, A class of optimal control problems of systems governed by the first order linear dynamic equations on time scales. J. Ind. Manag. Opt. 5 (2009) 1–13. [Google Scholar]
  4. G.S. Guseinov, Integration on time scales. J. Math. Anal. Appl. 285 (2003) 107–127. [CrossRef] [MathSciNet] [Google Scholar]
  5. R. Hilscher and V. Zeidan, Weak maximum principle and accessory problem for control problems on time scales. Nonlinear Anal. 70 (2009) 3209–3226. [CrossRef] [MathSciNet] [Google Scholar]
  6. S. Hu and N.S. Papageoriou, Handbook of Multivalued Analysis. Kluwer Academic Publishers, Dordrecht (1997). [Google Scholar]
  7. V. Lakshmikantham, S. Sivasundaram and B. Kaymakcalan, Dynamical Systems on Measure Chains. Kluwer Acadamic Publishers, Dordrecht (1996). [Google Scholar]
  8. H. Liu and X. Xiang, A class of the first order impulsive dynamic equations on time scales. Nonlinear Anal. 69 (2008) 2803–2811. [CrossRef] [MathSciNet] [Google Scholar]
  9. A.B. Malinowska and D.F.M. Torres, Strong minimizers of the calculus of variations on time scales and the Weierstrass condition, in Proceedings of the Estonian Academy of Sciences 58 (2009) 205–212. [Google Scholar]
  10. Y. Peng and X. Xiang, Necessary conditions of optimality for a class of optimal control problem on time scales. Comp. Math. Appl. 58 (2009) 2035–2045. [CrossRef] [Google Scholar]
  11. B.P. Rynne, L2 spaces and boundary value problems on time-scales. J. Math. Anal. Appl. 328 (2007) 1217–1236. [CrossRef] [MathSciNet] [Google Scholar]
  12. S.I. Suslov, Semicontinuouity of an integral functional in Banach space. Sib. Math. J. 38 (1997) 350–359. [CrossRef] [Google Scholar]
  13. C.C. Tisdell and A. Zaidi, Basic qualitative and quantitative results for solutions to nonlinear, dynamic equations on time scales with an application to economic modelling. Nonlinear Anal. 68 (2008) 3504–3524. [CrossRef] [MathSciNet] [Google Scholar]
  14. D.-B. Wang, Positive solutions for nonlinear first-order periodic boundary value problems of impulsive dynamic equations on time scales. Comp. Math. Appl. 56 (2008) 1496–1504. [CrossRef] [Google Scholar]
  15. E. Zeidler, Nonlinear Functional Analysis and its Applications III. Springer-Verlag, New York (1985). [Google Scholar]
  16. Z. Zhan and W. Wei, Necessary conditions for a class of optimal control problems on time scales. Abstr. Appl. Anal. 2009 (2009) e1–e14. [Google Scholar]
  17. Z. Zhan and W. Wei, On existence of optimal control governed by a class of the first-order linear dynamic systems on time scales. Appl. Math. Comput. 215 (2009) 2070–2081. [CrossRef] [MathSciNet] [Google Scholar]
  18. Z. Zhan, W. Wei and H. Xu, Hamilton-Jacobi-Bellman equations on time scales. Math. Comp. Model. 49 (2009) 2019–2028. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.