Free Access
Issue
ESAIM: COCV
Volume 17, Number 3, July-September 2011
Page(s) 682 - 704
DOI https://doi.org/10.1051/cocv/2010013
Published online 31 March 2010
  1. L. Ambrosio and A. Pratelli, Existence and stability results in the L1-theory of optimal transportation – CIME Course, in Lecture Notes in Mathematics 1813. Springer Verlag (2003) 123–160. [Google Scholar]
  2. M. Beiglböck and W. Schachermayer, Duality for Borel measurable cost functions. Trans. Amer. Math. Soc. (to appear). [Google Scholar]
  3. M. Beiglböck, M. Goldstern, G. Maresh and W. Schachermayer, Optimal and better transport plans. J. Funct. Anal. 256 (2009) 1907–1927. [CrossRef] [MathSciNet] [Google Scholar]
  4. M. Beiglböck, C. Léonard and W. Schachermayer, A general duality theorem for the Monge-Kantorovich transport problem. Preprint (2009). [Google Scholar]
  5. J.M. Borwein and A.S. Lewis, Decomposition of multivariate functions. Can. J. Math. 44 (1992) 463–482. [CrossRef] [Google Scholar]
  6. H. Brezis, Analyse fonctionnelle – Théorie et applications. Masson, Paris (1987). [Google Scholar]
  7. G. Dal Maso, An Introduction to Γ-Convergence. Progress in Nonlinear Differential Equations and Their Applications 8. Birkhäuser (1993). [Google Scholar]
  8. L. Decreusefond, Wasserstein distance on configuration space. Potential Anal. 28 (2008) 283–300. [CrossRef] [MathSciNet] [Google Scholar]
  9. L. Decreusefond, A. Joulin and N. Savy, Upper bounds on Rubinstein distances on configuration spaces and applications. Communications on Stochastic Analysis (to appear). [Google Scholar]
  10. I. Ekeland and R. Témam, Convex Analysis and Variational Problems, Classics in Applied Mathematics 28. SIAM (1999). [Google Scholar]
  11. D. Feyel and A.S. Üstünel, Monge-Kantorovitch measure transportation and Monge-Ampère equation on Wiener space. Probab. Theory Relat. Fields 128 (2004) 347–385. [CrossRef] [Google Scholar]
  12. C. Léonard, Convex minimization problems with weak constraint qualifications. Journal of Convex Analysis 17 (2010) 312–348. [Google Scholar]
  13. J. Neveu, Bases mathématiques du calcul des probabilités. Masson, Paris (1970). [Google Scholar]
  14. A. Pratelli, On the sufficiency of the c-cyclical monotonicity for optimality of transport plans. Math. Z. 258 (2008) 677–690. [CrossRef] [MathSciNet] [Google Scholar]
  15. S. Rachev and L. Rüschendorf, Mass Transportation Problems. Vol. I: Theory, Vol. II: Applications. Springer-Verlag, New York (1998). [Google Scholar]
  16. L. Rüschendorf, On c-optimal random variables. Statist. Probab. Lett. 27 (1996) 267–270. [CrossRef] [MathSciNet] [Google Scholar]
  17. W. Schachermayer and J. Teichman, Characterization of optimal transport plans for the Monge-Kantorovich problem. Proc. Amer. Math. Soc. 137 (2009) 519–529. [CrossRef] [MathSciNet] [Google Scholar]
  18. C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics 58. American Mathematical Society, Providence (2003). [Google Scholar]
  19. C. Villani, Optimal Transport – Old and New, Grundlehren der mathematischen Wissenschaften 338. Springer (2009). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.