Free Access
Issue
ESAIM: COCV
Volume 17, Number 3, July-September 2011
Page(s) 705 - 721
DOI https://doi.org/10.1051/cocv/2010010
Published online 31 March 2010
  1. G. Allaire, F. de Gournay, F. Jouve and A. Toader, Structural optimization using topological and shape sensitivity via a level set method. Control Cybern. 34 (2005) 59–80. [Google Scholar]
  2. S. Amstutz, Sensitivity analysis with respect to a local perturbation of the material property. Asymptotic Anal. 49 (2006) 87–108. [Google Scholar]
  3. S. Amstutz and H. Andrä, A new algorithm for topology optimization using a level-set method. J. Comput. Phys. 216 (2006) 573–588. [CrossRef] [MathSciNet] [Google Scholar]
  4. S. Amstutz, I. Horchani and M. Masmoudi, Crack detection by the topological gradient method. Control Cybern. 34 (2005) 81–101. [Google Scholar]
  5. D. Auroux, M. Masmoudi and L. Belaid, Image restoration and classification by topological asymptotic expansion, in Variational formulations in mechanics: theory and applications, Barcelona, Spain (2007). [Google Scholar]
  6. G.R. Feijóo, A new method in inverse scattering based on the topological derivative. Inv. Prob. 20 (2004) 1819–1840. [CrossRef] [Google Scholar]
  7. S. Garreau, Ph. Guillaume and M. Masmoudi, The topological asymptotic for pde systems: the elasticity case. SIAM J. Control Optim. 39 (2001) 1756–1778. [CrossRef] [MathSciNet] [Google Scholar]
  8. M. Hintermüller and A. Laurain, Electrical impedance tomography: from topology to shape. Control Cybern. 37 (2008) 913–933. [Google Scholar]
  9. M. Hintermüller and A. Laurain, Multiphase image segmentation and modulation recovery based on shape and topological sensitivity. J. Math. Imag. Vis. 35 (2009) 1–22. [CrossRef] [MathSciNet] [Google Scholar]
  10. I. Larrabide, R.A. Feijóo, A.A. Novotny and E. Taroco, Topological derivative: a tool for image processing. Comput. Struct. 86 (2008) 1386–1403. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  11. R.W. Little, Elasticity. Prentice-Hall, New Jersey (1973). [Google Scholar]
  12. S.A. Nazarov and J. Sokołowski, Asymptotic analysis of shape functionals. J. Math. Pures Appl. 82 (2003) 125–196. [MathSciNet] [Google Scholar]
  13. A.A. Novotny, R.A. Feijóo, C. Padra and E. Taroco, Topological derivative for linear elastic plate bending problems. Control Cybern. 34 (2005) 339–361. [Google Scholar]
  14. A.A. Novotny, R.A. Feijóo, E. Taroco and C. Padra, Topological sensitivity analysis for three-dimensional linear elasticity problem. Comput. Methods Appl. Mech. Eng. 196 (2007) 4354–4364. [CrossRef] [Google Scholar]
  15. J. Sokołowski and A. Żochowski, On the topological derivative in shape optimization. SIAM J. Control Optim. 37 (1999) 1251–1272. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.