Free Access
Volume 17, Number 3, July-September 2011
Page(s) 722 - 748
Published online 23 April 2010
  1. W. Allegretto, C. Mocenni and A. Vicino, Periodic solutions in modelling lagoon ecological interactions. J. Math. Biol. 51 (2005) 367–388. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  2. L.J. Alvarez-Vázquez, F.J. Fernández and R. Muñoz-Sola, Analysis of a multistate control problem related to food technology. J. Differ. Equ. 245 (2008) 130–153. [CrossRef] [Google Scholar]
  3. L.J. Alvarez-Vázquez, F.J. Fernández and R. Muñoz-Sola, Mathematical analysis of a three-dimensional eutrophication model. J. Math. Anal. Appl. 349 (2009) 135–155. [CrossRef] [MathSciNet] [Google Scholar]
  4. N. Arada and J.-P. Raymond, Time optimal problems with Dirichlet boundary controls. Discrete Contin. Dyn. Syst. 9 (2003) 1549–1570. [CrossRef] [MathSciNet] [Google Scholar]
  5. O. Arino, K. Boushaba and A. Boussouar, A mathematical model of the dynamics of the phytoplankton-nutrient system. Nonlinear Anal. Real World Appl. 1 (2000) 69–87. [CrossRef] [MathSciNet] [Google Scholar]
  6. R.P. Canale, Modeling biochemical processes in aquatic ecosystems. Ann Arbor Science Publishers, Ann Arbor (1976). [Google Scholar]
  7. P. Cannarsa and H. Frankowska, Interior sphere property of attainable sets and time optimal control problems. ESAIM: COCV 12 (2006) 350–370. [CrossRef] [EDP Sciences] [Google Scholar]
  8. E. Casas, Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Optim. 31 (1993) 993–1006. [CrossRef] [MathSciNet] [Google Scholar]
  9. F. Cioffi and F. Gallerano, Management strategies for the control of eutrophication processes in Fogliano lagoon (Italy): a long-term analysis using a mathematical model. Appl. Math. Model. 25 (2001) 385–426. [CrossRef] [Google Scholar]
  10. M. Drago, B. Cescon and L. Iovenitti, A three-dimensional numerical model for eutrophication and pollutant transport. Ecol. Model. 145 (2001) 17–34. [CrossRef] [Google Scholar]
  11. M. Gugat and G. Leugering, L-norm minimal control of the wave equation: on the weakness of the bang-bang principle. ESAIM: COCV 14 (2008) 254–283. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  12. S. Li and G. Wang, The time optimal control of the Boussinesq equations. Numer. Funct. Anal. Optim. 24 (2003) 163–180. [CrossRef] [MathSciNet] [Google Scholar]
  13. F. Lunardini and G. Di Cola, Oxygen dynamics in coastal and lagoon ecosystems. Math. Comput. Model. 31 (2000) 135–141. [CrossRef] [Google Scholar]
  14. K. Park, H.-S. Jung, H.-S. Kim and S.-M. Ahn, Three-dimensional hydrodynamic-eutrophication model (HEM-3D): application to Kwang-Yang Bay, Korea. Mar. Environ. Res. 60 (2005) 171–193. [CrossRef] [PubMed] [Google Scholar]
  15. J.P. Raymond and H. Zidani, Pontryagin's principle for time-optimal problems. J. Optim. Theory Appl. 101 (1999) 375–402. [CrossRef] [MathSciNet] [Google Scholar]
  16. J.P. Raymond and H. Zidani, Time optimal problems with boundary controls. Differ. Integr. Equat. 13 (2000) 1039–1072. [Google Scholar]
  17. T. Roubíček, Nonlinear partial differential equations with applications. Birkhäuser-Verlag, Basel (2005). [Google Scholar]
  18. G. Wang, The existence of time optimal control of semilinear parabolic equations. Syst. Control Lett. 53 (2004) 171–175. [CrossRef] [Google Scholar]
  19. L. Wang and G. Wang, The optimal time control of a phase-field system. SIAM J. Control Optim. 42 (2003) 1483–1508. [CrossRef] [MathSciNet] [Google Scholar]
  20. Y. Yamashiki, M. Matsumoto, T. Tezuka, S. Matsui and M. Kumagai, Three-dimensional eutrophication model for Lake Biwa and its application to the framework design of transferable discharge permits. Hydrol. Proc. 17 (2003) 2957–2973. [CrossRef] [Google Scholar]
  21. E. Zeidler, Nonlinear Functional Analysis and Its Applications – Part 3: Variational Methods and Optimization. Springer-Verlag, Berlin (1985). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.