Free Access
Issue
ESAIM: COCV
Volume 17, Number 4, October-December 2011
Page(s) 1016 - 1034
DOI https://doi.org/10.1051/cocv/2010031
Published online 06 August 2010
  1. C. Alves and H. Ammari, Boundary integral formulae for the reconstruction of imperfections of small diameter in an elastic medium. SIAM J. Appl. Math. 62 (2002) 94–106. [CrossRef] [Google Scholar]
  2. H. Ammari, An inverse initial boundary value problem for the wave equation in the presence of imperfections of small volume. SIAM J. Control Optim. 41 (2002) 1194–1211. [CrossRef] [MathSciNet] [Google Scholar]
  3. H. Ammari, Identification of small amplitude perturbations in the electromagnetic parameters from partial dynamic boundary measurements. J. Math. Anal. Appl. 282 (2003) 479–494. [CrossRef] [MathSciNet] [Google Scholar]
  4. H. Ammari and H. Kang, Polarization and Moment Tensors: With Applications to Inverse Problems and Effective Medium Theory, Applied Mathematical Sciences 162. Springer-Verlag, New York (2007). [Google Scholar]
  5. H. Ammari, S. Moskow and M. Vogelius, Boundary integral formulas for the reconstruction of electromagnetic imperfections of small diameter. ESAIM: COCV 62 (2002) 94–106. [Google Scholar]
  6. H. Ammari, P. Calmon and E. Iakovleva, Direct elastic imaging of a small inclusion. SIAM J. Imaging Sci. 1 (2008) 169–187. [CrossRef] [MathSciNet] [Google Scholar]
  7. H. Ammari, H. Kang, E. Kim, K. Louati and M. Vogelius, A MUSIC-type algorithm for detecting internal corrosion from electrostatic boundary measurements. Numer. Math. 108 (2008) 501–528. [CrossRef] [MathSciNet] [Google Scholar]
  8. H. Ammari, Y. Capdeboscq, H. Kang and A. Kozhemyak, Mathematical models and reconstruction methods in magneto-acoustic imaging. Eur. J. Appl. Math. 20 (2009) 303–317. [CrossRef] [Google Scholar]
  9. H. Ammari, E. Bossy, V. Jugnon and H. Kang, Mathematical Modelling in Photo-Acoustic Imaging. SIAM Rev. (to appear). [Google Scholar]
  10. H. Ammari, M. Asch, L.G. Bustos, V. Jugnon and H. Kang, Transient wave imaging with limited-view data. SIAM J. Imaging Sci. (submitted) preprint available from http://www.cmap.polytechnique.fr/~ammari/preprints.html. [Google Scholar]
  11. M. Asch and G. Lebeau, Geometrical aspects of exact boundary controllability for the wave equation – A numerical study. ESAIM: COCV 3 (1998) 163–212. [CrossRef] [EDP Sciences] [Google Scholar]
  12. M. Asch and S.M. Mefire, Numerical localizations of 3D imperfections from an asymptotic formula for perturbations in the electric fields. J. Comput. Math. 26 (2008) 149–195. [MathSciNet] [Google Scholar]
  13. M. Asch and A. Münch, Uniformly controllable schemes for the wave equation on the unit square. J. Optim. Theory Appl. 143 (2009) 417–438. [CrossRef] [MathSciNet] [Google Scholar]
  14. S. Balay, K. Buschelman, W.D. Gropp, D. Kaushik, M.G. Knepley, L. Curfman McInnes, B.F. Smith and H. Zhang, PETSc Web page, http://www.mcs.anl.gov/petsc (2001). [Google Scholar]
  15. C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization of waves from the boundary. SIAM J. Control Optim. 30 (1992) 1024–1065. [CrossRef] [MathSciNet] [Google Scholar]
  16. E.O. Brigham. The fast Fourier transform and its applications. Prentice Hall, New Jersey (1988). [Google Scholar]
  17. Y. Capdebosq and M.S. Vogelius, A review of some recent work on impedance imaging for inhomogeneities of low volume fraction, in Contemporary Mathematics 362, C. Conca, R. Manasevich, G. Uhlmann and M.S. Vogelius Eds., AMS (2004) 69–88. [Google Scholar]
  18. C. Castro and S. Micu, Boundary controllability of a linear semi-discrete 1-D wave equation derived from a mixed finite element method. Numer. Math. 102 (2006) 413–462. [CrossRef] [MathSciNet] [Google Scholar]
  19. C. Castro, S. Micu and A. Münch, Numerical approximation of the boundary control for the wave equation with mixed finite elements in a square. IMA J. Num. Anal. 28 (2008) 186–214. [CrossRef] [MathSciNet] [Google Scholar]
  20. D.J. Cedio-Fengya, S. Moskow and M. Vogelius, Identification of conductivity imperfections of small diameter by boundary measurements. Continuous dependence and computational reconstruction. Inv. Probl. 14 (1998) 553–595. [CrossRef] [MathSciNet] [Google Scholar]
  21. P.G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and Its Applications 4. North-Holland Publishing Company (1978). [Google Scholar]
  22. J.-B. Duval, Identification dynamique de petites imperfections. Ph.D. Thesis, Université de Picardie Jules Verne, France (2009). [Google Scholar]
  23. L.C. Evans, Partial Differential Equations, Grad. Stud. Math. 19. AMS, Providence (1998). [Google Scholar]
  24. R. Glowinski, Ensuring well posedness by analogy; Stokes problem and boundary control for the wave equation. J. Comput. Phys. 103 (1992) 189–221. [Google Scholar]
  25. R. Glowinski and J.-L. Lions, Exact and approximate controllability for distributed parameter systems. Acta Numer. 4 (1995) 159–328. [CrossRef] [Google Scholar]
  26. R. Glowinski, C.H. Li and J.-L. Lions, A numerical approach to the exact controllability of the wave equation (I). Dirichlet controls: Description of the numerical methods. Jpn. J. Appl. Math. 7 (1990) 1–76. [CrossRef] [MathSciNet] [Google Scholar]
  27. L.I. Ignat and E. Zuazua, Convergence of a two-grid method algorithm for the control of the wave equation. J. Eur. Math. Soc. 11 (2009) 351–391. [CrossRef] [Google Scholar]
  28. J.A. Infante and E. Zuazua, Boundary observability for the space discretization of the one-dimensional wave equation. ESAIM: M2AN 33 (1999) 407–438. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  29. G. Lebeau and M. Nodet, Experimental study of the HUM control operator for linear waves. Experimental Mathematics 19 (2010) 93–120. [CrossRef] [MathSciNet] [Google Scholar]
  30. J.-L. Lions, Contrôlabilité exacte, Perturbations et Stabilisation de Systèmes Distribués, Tome 1, Contrôlabilité exacte. Masson, Paris (1988). [Google Scholar]
  31. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations. Springer (1997). [Google Scholar]
  32. M. Vogelius and D. Volkov, Asymptotic formulas for perturbations in the electromagnetic fields due to the presence of inhomogeneities of small diameter. ESAIM: M2AN 34 (2000) 723–748. [CrossRef] [EDP Sciences] [Google Scholar]
  33. W.L. Wood, Practical time-stepping schemes. Oxford Applied Mathematics and Computing Science Series, Clarendon Press, Oxford (1990). [Google Scholar]
  34. E. Zuazua, Boundary observability for the finite-difference space semi-discretizations of the 2-D wave equation in the square. J. Math. Pures Appl. 78 (1999) 523–563. [CrossRef] [MathSciNet] [Google Scholar]
  35. E. Zuazua, Propagation, observation and control of waves approximated by finite difference methods. SIAM Rev. 47 (2005) 197–243. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.