Free Access
Issue
ESAIM: COCV
Volume 17, Number 4, October-December 2011
Page(s) 1035 - 1065
DOI https://doi.org/10.1051/cocv/2010036
Published online 28 October 2010
  1. G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482–1518. [CrossRef] [MathSciNet] [Google Scholar]
  2. M.F. Ashby, The deformation of plastically non-homogeneous alloys. Philos. Mag. 21 (1970) 399–424. [CrossRef] [Google Scholar]
  3. D. Cioranescu, A. Damlamian and G. Griso, Periodic unfolding and homogenization. C. R. Math. Acad. Sci. Paris 335 (2002) 99–104. [CrossRef] [MathSciNet] [Google Scholar]
  4. D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization. SIAM J. Math. Anal. 40 (2008) 1585–1620. [CrossRef] [MathSciNet] [Google Scholar]
  5. G. Dal Maso, A. DeSimone and M.G. Mora, Quasistatic evolution problems for linearly elastic-perfectly plastic materials. Arch. Ration. Mech. Anal. 180 (2006) 237–291. [CrossRef] [MathSciNet] [Google Scholar]
  6. R. Dautray and J.-L. Lions, Mathematical analysis and numerical methods for science and technology 2, Functional and variational methods. Springer-Verlag, Berlin (1988). [Google Scholar]
  7. N.A. Fleck and J.W. Hutchinson, Strain gradient plasticity. Adv. Appl. Mech. 33 (1997) 295–361. [CrossRef] [Google Scholar]
  8. N.A. Fleck and J.W. Hutchinson, A reformulation of strain gradient plasticity. J. Mech. Phys. Solids. 49 (2001) 2245–2271. [CrossRef] [Google Scholar]
  9. N.A. Fleck and J.R. Willis, Bounds and estimates for the effect of strain gradients upon the effective plastic properties of an isotropic two-phase composite. J. Mech. Phys. Solids 52 (2004) 1855–1888. [CrossRef] [MathSciNet] [Google Scholar]
  10. G. Francfort and P.-M. Suquet, Homogenization and mechanical dissipation in thermoviscoelasticity. Arch. Ration. Mech. Anal. 96 (1986) 265–293. [Google Scholar]
  11. A. Giacomini and L. Lussardi, Quasi-static evolution for a model in strain gradient plasticity. SIAM J. Math. Anal. 40 (2008) 1201–1245. [CrossRef] [MathSciNet] [Google Scholar]
  12. P. Gudmundson, A unified treatment of strain gradient plasticity. J. Mech. Phys. Solids 52 (2004) 1379–1406. [CrossRef] [MathSciNet] [Google Scholar]
  13. M.E. Gurtin and L. Anand, A theory of strain-gradient plasticity for isotropic, plastically irrotational materials. I. Small deformations. J. Mech. Phys. Solids 53 (2005) 1624–1649. [CrossRef] [MathSciNet] [Google Scholar]
  14. D. Lukkassen, G. Nguetseng and P. Wall, Two-scale convergence. Int. J. Pure Appl. Math. 2 (2002) 35–86. [MathSciNet] [Google Scholar]
  15. A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems. Calc. Var. Partial Differential Equations 22 (2005) 73–99. [Google Scholar]
  16. A. Mielke, Evolution of rate-independent systems, in Handb. Differ. Equ., Evolutionary equations II, Elsevier/North-Holland, Amsterdam (2005) 461–559. [Google Scholar]
  17. A. Mielke and F. Theil, A mathematical model for rate independent phase transformations with hysteresis, in Proceedings of the Workshop on Models of Continuum Mechanics in Analysis and Engineering, H.-D. Alber, R. Balean and R. Farwig Eds., Shaker-Verlag, Aachen (1999) 117–129. [Google Scholar]
  18. A. Mielke and A.M. Timofte, Two-scale homogenization for evolutionary variational inequalities via the energetic formulation. SIAM J. Math. Anal. 39 (2007) 642–668. [CrossRef] [MathSciNet] [Google Scholar]
  19. G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608–623. [CrossRef] [MathSciNet] [Google Scholar]
  20. L. Tartar, Nonlocal effects induced by homogenization, in Partial differential equations and the calculus of variations II, Progr. Nonlinear Differential Equations Appl. 2, Birkhäuser Boston, Boston (1989) 925–938. [Google Scholar]
  21. L. Tartar, Memory effects and homogenization. Arch. Ration. Mech. Anal. 111 (1990) 121–133. [CrossRef] [MathSciNet] [Google Scholar]
  22. A. Visintin, Homogenization of the nonlinear Kelvin-Voigt model of viscoelasticity and of the Prager model of plasticity. Contin. Mech. Thermodyn. 18 (2006) 223–252. [CrossRef] [MathSciNet] [Google Scholar]
  23. A. Visintin, Homogenization of the nonlinear Maxwell model of viscoelasticity and of the Prandtl-Reuss model of elastoplasticity. Proc. Roy. Soc. Edinburgh Sect. A 138 (2008) 1363–1401. [CrossRef] [MathSciNet] [Google Scholar]
  24. A. Visintin, Homogenization of nonlinear visco-elastic composites. J. Math. Pures Appl. 89 (2008) 477–504. [CrossRef] [MathSciNet] [Google Scholar]
  25. J.R. Willis, Bounds and self-consistent estimates for the overall moduli of anisotropic composites. J. Mech. Phys. Solids 25 (1977) 182–202. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.