Free Access
Issue
ESAIM: COCV
Volume 18, Number 1, January-March 2012
Page(s) 36 - 80
DOI https://doi.org/10.1051/cocv/2010054
Published online 23 December 2010
  1. L. Ambrosio, Minimizing movements. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 19 (1995) 191–246. [MathSciNet] [Google Scholar]
  2. L. Ambrosio and G. Dal Maso, A general chain rule for distributional derivatives. Proc. Am. Math. Soc. 108 (1990) 691–702. [CrossRef] [MathSciNet] [Google Scholar]
  3. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs, Clarendon Press, Oxford (2000). [Google Scholar]
  4. L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich, 2nd edn., Birkhäuser Verlag, Basel (2008). [Google Scholar]
  5. F. Auricchio, A. Mielke and U. Stefanelli, A rate-independent model for the isothermal quasi-static evolution of shape-memory materials. Math. Models Meth. Appl. Sci. 18 (2008) 125–164. [CrossRef] [MathSciNet] [Google Scholar]
  6. G. Bouchitté, A. Mielke and T. Roubíček, A complete-damage problem at small strains. Z. Angew. Math. Phys. 60 (2009) 205–236. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Buliga, G. de Saxcé and C. Vallée, Existence and construction of bipotentials for graphs of multivalued laws. J. Convex Anal. 15 (2008) 87–104. [Google Scholar]
  8. P. Colli, On some doubly nonlinear evolution equations in Banach spaces. Japan J. Indust. Appl. Math. 9 (1992) 181–203. [CrossRef] [MathSciNet] [Google Scholar]
  9. P. Colli and A. Visintin, On a class of doubly nonlinear evolution equations. Commun. Partial Differ. Equ. 15 (1990) 737–756. [CrossRef] [MathSciNet] [Google Scholar]
  10. G. Dal Maso and R. Toader, A model for quasi-static growth of brittle fractures : existence and approximation results. Arch. Ration. Mech. Anal. 162 (2002) 101–135. [CrossRef] [MathSciNet] [Google Scholar]
  11. G. Dal Maso and R. Toader, A model for the quasi-static growth of brittle fractures based on local minimization. Math. Models Meth. Appl. Sci. 12 (2002) 1773–1799. [CrossRef] [MathSciNet] [Google Scholar]
  12. G. Dal Maso and C. Zanini, Quasi-static crack growth for a cohesive zone model with prescribed crack path. Proc. R. Soc. Edinb., Sect. A, Math. 137 (2007) 253–279. [CrossRef] [MathSciNet] [Google Scholar]
  13. G. Dal Maso, G. Francfort and R. Toader, Quasistatic crack growth in nonlinear elasticity. Arch. Ration. Mech. Anal. 176 (2005) 165–225. [CrossRef] [MathSciNet] [Google Scholar]
  14. G. Dal Maso, A. DeSimone and M.G. Mora, Quasistatic evolution problems for linearly elastic-perfectly plastic materials. Arch. Ration. Mech. Anal. 180 (2006) 237–291. [CrossRef] [MathSciNet] [Google Scholar]
  15. G. Dal Maso, A. DeSimone, M.G. Mora and M. Morini, Globally stable quasistatic evolution in plasticity with softening. Netw. Heterog. Media 3 (2008) 567–614. [CrossRef] [MathSciNet] [Google Scholar]
  16. G. Dal Maso, A. DeSimone, M.G. Mora and M. Morini, A vanishing viscosity approach to quasistatic evolution in plasticity with softening. Arch. Ration. Mech. Anal. 189 (2008) 469–544. [CrossRef] [MathSciNet] [Google Scholar]
  17. G. Dal Maso, A. DeSimone and F. Solombrino, Quasistatic evolution for cam-clay plasiticity : a weak formulation via viscoplastic regularization and time rescaling. Calc. Var. Partial Differential Equations (to appear). [Google Scholar]
  18. M. Efendiev and A. Mielke, On the rate-independent limit of systems with dry friction and small viscosity. J. Convex Analysis 13 (2006) 151–167. [Google Scholar]
  19. A. Fiaschi, A vanishing viscosity approach to a quasistatic evolution problem with nonconvex energy. Ann. Inst. Henri Poincaré, Anal. Non Linéaire (to appear). [Google Scholar]
  20. G. Francfort and A. Garroni, A variational view of partial brittle damage evolution. Arch. Ration. Mech. Anal. 182 (2006) 125–152. [CrossRef] [MathSciNet] [Google Scholar]
  21. G. Francfort and A. Mielke, Existence results for a class of rate-independent material models with nonconvex elastic energies. J. Reine Angew. Math. 595 (2006) 55–91. [CrossRef] [MathSciNet] [Google Scholar]
  22. J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms. II : Advanced theory and bundle methods, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 306. Springer-Verlag, Berlin (1993). [Google Scholar]
  23. D. Knees, A. Mielke and C. Zanini, On the inviscid limit of a model for crack propagation. Math. Models Meth. Appl. Sci. 18 (2008) 1529–1569. [CrossRef] [MathSciNet] [Google Scholar]
  24. D. Knees, C. Zanini and A. Mielke, Crack propagation in polyconvex materials. Physica D 239 (2010) 1470–1484. [CrossRef] [MathSciNet] [Google Scholar]
  25. M. Kočvara, A. Mielke and T. Roubíček, A rate-independent approach to the delamination problem. Math. Mech. Solids 11 (2006) 423–447. [CrossRef] [MathSciNet] [Google Scholar]
  26. P. Krejčí, Evolution variational inequalities and multidimensional hysteresis operators, in Nonlinear differential equations (Chvalatice, 1998), Res. Notes Math. 404, Chapman & Hall/CRC, Boca Raton, FL (1999) 47–110. [Google Scholar]
  27. P. Krejčí, and M. Liero, Rate independent Kurzweil processes. Appl. Math. 54 (2009) 117–145. [CrossRef] [MathSciNet] [Google Scholar]
  28. C.J. Larsen, Epsilon-stable quasi-static brittle fracture evolution. Comm. Pure Appl. Math. 63 (2010) 630–654. [MathSciNet] [Google Scholar]
  29. A. Mainik and A. Mielke, Existence results for energetic models for rate-independent systems. Calc. Var. PDEs 22 (2005) 73–99. [Google Scholar]
  30. A. Mainik and A. Mielke, Global existence for rate-independent gradient plasticity at finite strain. J. Nonlin. Sci. 19 (2009) 221–248. [CrossRef] [MathSciNet] [Google Scholar]
  31. A. Mielke, Energetic formulation of multiplicative elasto-plasticity using dissipation distances. Contin. Mech. Thermodyn. 15 (2003) 351–382. [CrossRef] [MathSciNet] [Google Scholar]
  32. A. Mielke, Evolution in rate-independent systems (Chap. 6), in Handbook of differential equations, evolutionary equations 2, C. Dafermos and E. Feireisl Eds., Elsevier B.V., Amsterdam (2005) 461–559. [Google Scholar]
  33. A. Mielke, Differential, energetic and metric formulations for rate-independent processes. Lecture Notes, Summer School Cetraro (in press). [Google Scholar]
  34. A. Mielke and T. Roubčíek, A rate-independent model for inelastic behavior of shape-memory alloys. Multiscale Model. Simul. 1 (2003) 571–597. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  35. A. Mielke and T. Roubčíek, Rate-independent damage processes in nonlinear elasticity. M3 ! AS Math. Models Meth. Appl. Sci. 16 (2006) 177–209. [CrossRef] [MathSciNet] [Google Scholar]
  36. A. Mielke and T. Roubčíek, Rate-Independent Systems : Theory and Application. (In preparation). [Google Scholar]
  37. A. Mielke and F. Theil, A mathematical model for rate-independent phase transformations with hysteresis, in Proceedings of the Workshop on Models of Continuum Mechanics in Analysis and Engineering, H.-D. Alber, R. Balean and R. Farwig Eds., Shaker-Verlag, Aachen (1999) 117–129. [Google Scholar]
  38. A. Mielke and F. Theil, On rate-independent hysteresis models. NoDEA 11 (2004) 151–189. [Google Scholar]
  39. A. Mielke and A. Timofte, An energetic material model for time-dependent ferroelectric behavior : existence and uniqueness. Math. Meth. Appl. Sci. 29 (2006) 1393–1410. [CrossRef] [Google Scholar]
  40. A. Mielke and S. Zelik, On the vanishing viscosity limit in parabolic systems with rate-independent dissipation terms. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (submitted). [Google Scholar]
  41. A. Mielke, F. Theil and V.I. Levitas, A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Ration. Mech. Anal. 162 (2002) 137–177. [CrossRef] [MathSciNet] [Google Scholar]
  42. A. Mielke, R. Rossi and G. Savaré, Modeling solutions with jumps for rate-independent systems on metric spaces. Discrete Contin. Dyn. Syst. 25 (2009) 585–615. [CrossRef] [MathSciNet] [Google Scholar]
  43. A. Mielke, R. Rossi and G. Savaré, Nonsmooth analysis of doubly nonlinear evolution equations. (In preparation). [Google Scholar]
  44. M. Negri and C. Ortner, Quasi-static crack propagation by Griffith’s criterion. Math. Models Meth. Appl. Sci. 18 (2008) 1895–1925. [CrossRef] [MathSciNet] [Google Scholar]
  45. R.T. Rockafellar, Convex Analysis. Princeton University Press, Princeton (1970). [Google Scholar]
  46. R. Rossi and G. Savaré, Gradient flows of non convex functionals in Hilbert spaces and applications. ESAIM : COCV 12 (2006) 564–614. [CrossRef] [EDP Sciences] [Google Scholar]
  47. R. Rossi, A. Mielke and G. Savaré, A metric approach to a class of doubly nonlinear evolution equations and applications. Ann. Sc. Norm. Super. Pisa Cl. Sci. 7 (2008) 97–169. [MathSciNet] [Google Scholar]
  48. T. Roubčíek, Rate independent processes in viscous solids at small strains. Math. Methods Appl. Sci. 32 (2009) 825–862. [CrossRef] [MathSciNet] [Google Scholar]
  49. U. Stefanelli, A variational characterization of rate-independent evolution. Math. Nachr. 282 (2009) 1492–1512. [CrossRef] [MathSciNet] [Google Scholar]
  50. M. Thomas and A. Mielke, Damage of nonlinearly elastic materials at small strains – Existence and regularity results. Zeits. Angew. Math. Mech. 90 (2009) 88–112. [CrossRef] [MathSciNet] [Google Scholar]
  51. R. Toader and C. Zanini, An artificial viscosity approach to quasistatic crack growth. Boll. Unione Mat. Ital. 2 (2009) 1–35. [MathSciNet] [Google Scholar]
  52. A. Visintin, Differential models of hysteresis, Applied Mathematical Sciences 111. Springer-Verlag, Berlin (1994). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.