Free Access
Issue
ESAIM: COCV
Volume 18, Number 1, January-March 2012
Page(s) 81 - 90
DOI https://doi.org/10.1051/cocv/2010046
Published online 02 December 2010
  1. E. Le Gruyer, On absolutely minimizing Lipschitz extensions and PDE Δ(u) = 0. NoDEA 14 (2007) 29–55. [CrossRef] [Google Scholar]
  2. E. Le Gruyer and J.C. Archer, Harmonious extensions. SIAM J. Math. Anal. 29 (1998) 279–292. [CrossRef] [MathSciNet] [Google Scholar]
  3. A.P. Maitra and W.D. Sudderth, Borel stochastic games with limsup payoff. Ann. Probab. 21 (1993) 861–885. [CrossRef] [MathSciNet] [Google Scholar]
  4. A.P. Maitra and W.D. Sudderth, Discrete gambling and stochastic games, Applications of Mathematics 32. Springer-Verlag (1996). [Google Scholar]
  5. J.J. Manfredi, M. Parviainen and J.D. Rossi, An asymptotic mean value property characterization of p-harmonic functions. Proc. Am. Math. Soc. 138 (2010) 881–889. [CrossRef] [Google Scholar]
  6. J.J. Manfredi, M. Parviainen and J.D. Rossi, On the definition and properties of p-harmonious functions. Preprint (2009). [Google Scholar]
  7. A. Oberman, A convergent difference scheme for the infinity Laplacian : construction of absolutely minimizing Lipschitz extensions. Math. Comp. 74 (2005) 1217–1230. [CrossRef] [MathSciNet] [Google Scholar]
  8. Y. Peres and S. Sheffield, Tug-of-war with noise : a game theoretic view of the p-Laplacian. Duke Math. J. 145 (2008) 91–120. [CrossRef] [MathSciNet] [Google Scholar]
  9. Y. Peres, O. Schramm, S. Sheffield and D. Wilson, Tug-of-war and the infinity Laplacian. J. Am. Math. Soc. 22 (2009) 167–210. [Google Scholar]
  10. S.R.S. Varadhan, Probability theory, Courant Lecture Notes in Mathematics 7. Courant Institute of Mathematical Sciences, New York University/AMS (2001). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.