Free Access
Volume 18, Number 1, January-March 2012
Page(s) 81 - 90
Published online 02 December 2010
  1. E. Le Gruyer, On absolutely minimizing Lipschitz extensions and PDE Δ(u) = 0. NoDEA 14 (2007) 29–55. [CrossRef]
  2. E. Le Gruyer and J.C. Archer, Harmonious extensions. SIAM J. Math. Anal. 29 (1998) 279–292. [CrossRef] [MathSciNet]
  3. A.P. Maitra and W.D. Sudderth, Borel stochastic games with limsup payoff. Ann. Probab. 21 (1993) 861–885. [CrossRef] [MathSciNet]
  4. A.P. Maitra and W.D. Sudderth, Discrete gambling and stochastic games, Applications of Mathematics 32. Springer-Verlag (1996).
  5. J.J. Manfredi, M. Parviainen and J.D. Rossi, An asymptotic mean value property characterization of p-harmonic functions. Proc. Am. Math. Soc. 138 (2010) 881–889. [CrossRef]
  6. J.J. Manfredi, M. Parviainen and J.D. Rossi, On the definition and properties of p-harmonious functions. Preprint (2009).
  7. A. Oberman, A convergent difference scheme for the infinity Laplacian : construction of absolutely minimizing Lipschitz extensions. Math. Comp. 74 (2005) 1217–1230. [CrossRef] [MathSciNet]
  8. Y. Peres and S. Sheffield, Tug-of-war with noise : a game theoretic view of the p-Laplacian. Duke Math. J. 145 (2008) 91–120. [CrossRef] [MathSciNet]
  9. Y. Peres, O. Schramm, S. Sheffield and D. Wilson, Tug-of-war and the infinity Laplacian. J. Am. Math. Soc. 22 (2009) 167–210. [CrossRef] [MathSciNet]
  10. S.R.S. Varadhan, Probability theory, Courant Lecture Notes in Mathematics 7. Courant Institute of Mathematical Sciences, New York University/AMS (2001).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.