Free Access
Issue
ESAIM: COCV
Volume 18, Number 1, January-March 2012
Page(s) 91 - 123
DOI https://doi.org/10.1051/cocv/2010052
Published online 23 December 2010
  1. R.A. Adams and J.J.F. Fournier, Sobolev spaces, Pure and Applied Mathematics (Amsterdam) 140. Elsevier/Academic Press, Amsterdam, 2nd edition (2003). [Google Scholar]
  2. L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs, Oxford University Press, Oxford (2000). [Google Scholar]
  3. M. Barchiesi and G. Dal Maso, Homogenization of fiber reinforced brittle materials : the extremal cases. SIAM J. Math. Anal. 41 (2009) 1874–1889. [CrossRef] [MathSciNet] [Google Scholar]
  4. A. Braides, Γ-convergence for beginners, Oxford Lecture Series in Mathematics and its Applications 22. Oxford University Press, Oxford (2002). [Google Scholar]
  5. A. Braides, and V. Chiadò Piat, Another brick in the wall, in Variational problems in materials science, Progr. Nonlinear Differential Equation Appl. 68, Birkhäuser, Basel (2006) 13–24. [Google Scholar]
  6. A. Braides, A. Defranceschi and E. Vitali, Homogenization of free discontinuity problems. Arch. Rational Mech. Anal. 135 (1996) 297–356. [CrossRef] [MathSciNet] [Google Scholar]
  7. P.G. Ciarlet, Mathematical elasticity. Three-dimensional elasticity I, Studies in Mathematics and its Applications 20. North-Holland Publishing Co., Amsterdam (1988). [Google Scholar]
  8. P.G. Ciarlet and J. Nečas, Injectivity and self-contact in nonlinear elasticity. Arch. Rational Mech. Anal. 97 (1987) 171–188. [CrossRef] [MathSciNet] [Google Scholar]
  9. G. Cortesani and R. Toader, A density result in SBV with respect to non-isotropic energies. Nonlinear Anal. 38 (1999) 585–604. [CrossRef] [MathSciNet] [Google Scholar]
  10. G. Dal Maso, An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and their Applications 8. Birkhäuser Boston Inc., Boston, MA (1993). [Google Scholar]
  11. G. Dal Maso and G. Lazzaroni, Quasistatic crack growth in finite elasticity with non-interpenetration. Ann. Inst. Henri Poincaré Anal. Non Linéaire 27 (2010) 257–290. [CrossRef] [Google Scholar]
  12. G. Dal Maso and C.I. Zeppieri, Homogenization of fiber reinforced brittle materials : the intermediate case. Adv. Calc. Var. 3 (2010) 345–370. [CrossRef] [MathSciNet] [Google Scholar]
  13. L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. Studies in Advanced Mathematics, CRC Press, Boca Raton, FL (1992). [Google Scholar]
  14. G.A. Francfort and C.J. Larsen, Existence and convergence for quasi-static evolution in brittle fracture. Commun. Pure Appl. Math. 56 (2003) 1465–1500. [CrossRef] [MathSciNet] [Google Scholar]
  15. A. Giacomini and M. Ponsiglione, Non-interpenetration of matter for SBV deformations of hyperelastic brittle materials. Proc. R. Soc. Edinb. Sect. A 138 (2008) 1019–1041. [CrossRef] [Google Scholar]
  16. G.A. Iosifýan, Homogenization of problems in the theory of elasticity with Signorini boundary conditions. Mat. Zametki 75 (2004) 818–833. [Google Scholar]
  17. N. Kikuchi and J.T. Oden, Contact problems in elasticity : a study of variational inequalities and finite element methods, SIAM Studies in Applied Mathematics 8. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1988). [Google Scholar]
  18. D. Lukkassen, G. Nguetseng and P. Wall, Two-scale convergence. Int. J. Pure Appl. Math. 2 (2002) 35–86. [Google Scholar]
  19. A. Mikelić, M. Shillor and R. Tapiéro, Homogenization of an elastic material with inclusions in frictionless contact. Math. Comput. Model. 28 (1998) 287–307. [CrossRef] [Google Scholar]
  20. O. Pantz, The modeling of deformable bodies with frictionless (self-)contacts. Arch. Ration. Mech. Anal. 188 (2008) 183–212. [CrossRef] [MathSciNet] [Google Scholar]
  21. L. Scardia, Damage as Γ-limit of microfractures in anti-plane linearized elasticity. Math. Models Methods Appl. Sci. 18 (2008) 1703–1740. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  22. L. Scardia, Damage as the Γ-limit of microfractures in linearized elasticity under the non-interpenetration constraint. Adv. Calc. Var. 3 (2010) 423–458. [CrossRef] [MathSciNet] [Google Scholar]
  23. A. Signorini, Sopra alcune questioni di statica dei sistemi continui. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 2 (1933) 231–251. [MathSciNet] [Google Scholar]
  24. P.E. Stelzig, Homogenization of many-body structures subject to large deformations and noninterpenetration. Ph.D. Thesis, Technische Universität München (2009). Available electronically at http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20091214-797081-1-9. [Google Scholar]
  25. J.Y. Wong, Theory of ground vehicles. John Wiley & Sons Inc., New York (2001). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.