Highlight
Free Access
Issue
ESAIM: COCV
Volume 18, Number 1, January-March 2012
Page(s) 124 - 156
DOI https://doi.org/10.1051/cocv/2010053
Published online 23 December 2010
  1. J.P. Aubin and A. Cellina, Differential inclusions. Springer-Verlag, Berlin (1984). [Google Scholar]
  2. M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Birkhäuser, Boston (1997). [Google Scholar]
  3. V.G. Boltyanskii, Sufficient conditions for optimality and the justification of the dynamic programming principle. SIAM J. Control Optim. 4 (1966) 326–361. [Google Scholar]
  4. A. Bressan, Differential inclusions and the control of forest fires. J. Differ. Equ. 243 (2007) 179–207. [CrossRef] [Google Scholar]
  5. A. Bressan and C. De Lellis, Existence of optimal strategies for a fire confinement problem. Comm. Pure Appl. Math. 62 (2009) 789–830. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Bressan and Y. Hong, Optimal control problems on stratified domains. NHM 2 (2007) 313–331. [Google Scholar]
  7. A. Bressan and B. Piccoli, Introduction to the Mathematical Theory of Control, AIMS Series in Applied Mathematics 2. AIMS, Springfield Mo. (2007). [Google Scholar]
  8. A. Bressan and T. Wang, The minimum speed for a blocking problem on the half plane. J. Math. Anal. Appl. 356 (2009) 133–144. [CrossRef] [MathSciNet] [Google Scholar]
  9. A. Bressan and T. Wang, Equivalent formulation and numerical analysis of a fire confinement problem. ESAIM : COCV 16 (2010) 974–1001. [Google Scholar]
  10. A. Bressan, M. Burago, A. Friend and J. Jou, Blocking strategies for a fire control problem. Analysis and Applications 6 (2008) 229–246. [CrossRef] [MathSciNet] [Google Scholar]
  11. P. Brunovský, Every normal linear system has a regular time-optimal synthesis. Math. Slovaca 28 (1978) 81–100. [MathSciNet] [Google Scholar]
  12. F.H. Clarke, Optimization and Nonsmooth Analysis. Second edition, SIAM, Philadelphia (1990). [Google Scholar]
  13. W.H. Fleming and R.W. Rishel, Deterministic and Stochastic Optimal Control. Springer-Verlag, New York (1975). [Google Scholar]
  14. A.D. Ioffe and V.M. Tihomirov, Theory of Extremal Problems. North-Holland, New York (1974) 233–235. [Google Scholar]
  15. R. Vinter, Optimal Control. Birkhäuser, Boston (2000). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.