Free Access
Issue |
ESAIM: COCV
Volume 18, Number 1, January-March 2012
|
|
---|---|---|
Page(s) | 208 - 228 | |
DOI | https://doi.org/10.1051/cocv/2010050 | |
Published online | 02 December 2010 |
- K. Ammari and M. Jellouli, Stabilization of star-shaped tree of elastic strings. Differential Integral Equations 17 (2004) 1395–1410. [MathSciNet] [Google Scholar]
- K. Ammari and M. Jellouli, Remark on stabilization of tree-shaped networks of strings. Appl. Math. 52 (2007) 327–343. [CrossRef] [MathSciNet] [Google Scholar]
- K. Ammari and S. Nicaise, Polynomial and analytic stabilization of a wave equation coupled with a Euler-Bernoulli beam. Math. Methods Appl. Sci. 32 (2009) 556–576. [CrossRef] [MathSciNet] [Google Scholar]
- K. Ammari, M. Jellouli and M. Khenissi, Stabilization of generic trees of strings. J. Dyn. Control Syst. 11 (2005) 177–193. [CrossRef] [MathSciNet] [Google Scholar]
- J.A. Bondy and U.S.R. Murty, Graph Theory, Graduate Texts in Mathematics Series. Springer-Verlag, New York (2008). [Google Scholar]
- R. Dáger, Observation and control of vibrations in tree-shaped networks of strings. SIAM J. Control Optim. 43 (2004) 590–623. [CrossRef] [MathSciNet] [Google Scholar]
- R. Dáger and E. Zuazua, Controllability of star-shaped networks of strings. C. R. Acad. Sci. Paris, Sér. I 332 (2001) 621–626. [Google Scholar]
- R. Dáger and E. Zuazua, Controllability of tree-shaped networks of vibrating strings. C. R. Acad. Sci. Paris, Sér. I 332 (2001) 1087–1092. [Google Scholar]
- R. Dáger and E. Zuazua, Wave propagation, observation and control in 1-d flexible multistructures, Mathématiques and Applications 50. Springer-Verlag, Berlin (2006). [Google Scholar]
- M. Gugat, Boundary feedback stabilization by time delay for one-dimensional wave equations. IMA J. Math. Control Inform. 27 (2010) 189–204. [Google Scholar]
- B.Z. Guo and Z.C. Shao, On exponential stability of a semilinear wave equation with variable coefficients under the nonlinear boundary feedback. Nonlinear Anal. 71 (2009) 5961–5978. [CrossRef] [MathSciNet] [Google Scholar]
- D. Jungnickel, Graphs, Networks and Algorithms, Algorithms and Computation in Mathematics 5. Springer-Verlag, New York, third edition (2008). [Google Scholar]
- J.E. Lagnese, G. Leugering and E.J.P.G. Schmidt, Modeling, analysis and control of dynamic elastic multi-link structures – Systems and control : Foundations and applications. Birkhäuser-Basel (1994). [Google Scholar]
- G. Leugering and E.J.P.G. Schmidt, On the control of networks of vibrating strings and beams. Proc. of the 28th IEEE Conference on Decision and Control 3 (1989) 2287–2290. [CrossRef] [Google Scholar]
- G. Leugering and E. Zuazua, On exact controllability of generic trees. ESAIM : Proc. 8 (2000) 95–105. [CrossRef] [EDP Sciences] [Google Scholar]
- Yu.I. Lyubich and V.Q. Phóng, Asymptotic stability of linear differential equations in Banach spaces. Studia Math. 88 (1988) 34–37. [Google Scholar]
- S. Nicaise and J. Valein, Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks. Netw. Heterog. Media 2 (2007) 425-479. [CrossRef] [MathSciNet] [Google Scholar]
- A. Pazy, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, Berlin (1983). [Google Scholar]
- J. Valein and E. Zuazua, Stabilization of the wave equation on 1-d networks. SIAM J. Control Optim. 48 (2009) 2771–2797. [CrossRef] [MathSciNet] [Google Scholar]
- G.Q. Xu, D.Y. Liu and Y.Q. Liu, Abstract second order hyperbolic system and applications to controlled network of strings. SIAM J. Control Optim. 47 (2008) 1762–1784. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.