Free Access
Issue
ESAIM: COCV
Volume 18, Number 1, January-March 2012
Page(s) 229 - 258
DOI https://doi.org/10.1051/cocv/2010045
Published online 23 December 2010
  1. G. Allaire, Shape optimization by the homogenization method, Applied Mathematical Sciences 146. Springer-Verlag, New York (2002).
  2. G. Allaire, Topology Optimization with the Homogenization and the Level-Set Method, in Nonlinear Homogenization and its Applications to Composites, Polycrystals and Smart Materials, NATO Science Series II : Mathematics, Physics and Chemistry 170, Springer (2004) 1–13.
  3. G. Allaire, E. Bonnetier, G. Francfort and F. Jouve, Shape optimization by the homogenization method. Numer. Math. 76 (1997) 27–68. [CrossRef] [MathSciNet]
  4. G. Allaire, F. Jouve and A.-M. Toader, A level-set method for shape optimization. C. R. Acad. Sci. Paris, Sér. I 334 (2002) 1125–1130. [CrossRef] [MathSciNet]
  5. G. Allaire, F. Jouve and H. Maillot, Topology optimization for minimum stress design with the homogenization method. Struct. Multidisc. Optim. 28 (2004) 87–98.
  6. G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194 (2004) 363–393. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  7. G. Allaire, F. de Gournay, F. Jouve and A.-M. Toader, Structural optimization using topological and shape sensitivity via a level set method. Control Cybern. 34 (2005) 59–80.
  8. S.M. Allen and J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979) 1085–1095. [CrossRef]
  9. L. Ambrosio and G. Buttazzo, An optimal design problem with perimeter penalization. Calc. Var. 1 (1993) 55–69. [CrossRef] [MathSciNet]
  10. R. Ansola, E. Veguería, J. Canales and J.A. Tárrago, A simple evolutionary topology optimization procedure for compliant mechanism design. Finite Elements Anal. Des. 44 (2007) 53–62. [CrossRef]
  11. J.M. Ball, Convexity conditions and existence theorems in nonlinear elasiticity. Arch. Ration. Mech. Anal. 63 (1977) 337–403. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  12. J.M. Ball, Global invertibility of Sobolev functions and the interpenetration of matter. Proc. R. Soc. Edinb. A 88 (1981) 315–328. [CrossRef] [MathSciNet]
  13. B. Bourdin and A. Chambolle, Design-dependent loads in topology optimization. ESAIM : COCV 9 (2003) 19–48. [CrossRef] [EDP Sciences]
  14. A. Braides, Γ-convergence for beginners, Oxford Lecture Series in Mathematics and its Applications 2. Oxford University Press, Oxford (2002).
  15. M. Burger and R. Stainko, Phase-field relaxation of topology optimization with local stress constraints. SIAM J. Control Optim. 45 (2006) 1447–1466. [CrossRef] [MathSciNet]
  16. A. Chambolle, A density result in two-dimensional linearized elasticity, and applications. Arch. Ration. Mech. Anal. 167 (2003) 211–233. [CrossRef] [MathSciNet]
  17. Y. Chen, T.A. Davis, W.W. Hager and S. Rajamanickam, Algorithm 887 : CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Trans. Math. Softw. 35 (2009) 22 :1–22 :14.
  18. P.G. Ciarlet, Three-dimensional elasticity. Elsevier Science Publishers B. V. (1988).
  19. A.R. Conn, N.I.M Gould and P.L. Toint, Trust-Region Methods. SIAM (2000).
  20. S. Conti, H. Held, M. Pach, M. Rumpf and R. Schultz, Risk averse shape optimization. SIAM J. Control Optim. (to appear).
  21. B. Dacorogna, Direct methods in the calculus of variations. Springer-Verlag, New York (1989).
  22. T.A. Davis and W.W. Hager, Dynamic supernodes in sparse Cholesky update/downdate and triangular solves. ACM Trans. Math. Softw. 35 (2009) 27 :1–27 :23. [CrossRef]
  23. G.P. Dias, J. Herskovits and F.A. Rochinha, Simultaneous shape optimization and nonlinear analysis of elastic solids, in Computational Mechanics – New Trends and Applications, E. Onate, I. Idelsohn and E. Dvorkin Eds., CIMNE, Barcelona (1998) 1–13.
  24. X. Guo, K. Zhao and M.Y. Wang, Simultaneous shape and topology optimization with implicit topology description functions. Control Cybern. 34 (2005) 255–282.
  25. Z. Liu, J.G. Korvink and R. Huang, Structure topology optimization : Fully coupled level set method via femlab. Struct. Multidisc. Optim. 29 (2005) 407–417. [CrossRef]
  26. J.E. Marsden and T.J.R. Hughes, Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs (1983).
  27. L. Modica and S. Mortola, Un esempio di Γ-convergenza. Boll. Un. Mat. Ital. B (5) 14 (1977) 285–299. [MathSciNet]
  28. P. Pedregal, Variational Methods in Nonlinear Elasticity. SIAM (2000).
  29. J.A. Sethian and A. Wiegmann, Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163 (2000) 489–528. [CrossRef] [MathSciNet]
  30. O. Sigmund and P.M. Clausen, Topology optimization using a mixed formulation : An alternative way to solve pressure load problems. Comput. Methods Appl. Mech. Eng. 196 (2007) 1874–1889. [CrossRef]
  31. J. Sikolowski and J.-P. Zolésio, Introduction to shape optimization, in Shape sensitivity analysis, Springer (1992).
  32. M.Y. Wang and S. Zhou, Synthesis of shape and topology of multi-material structures with a phase-field method. J. Computer-Aided Mater. Des. 11 (2004) 117–138. [CrossRef]
  33. M.Y. Wang, X. Wang and D. Guo, A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192 (2003) 227–246. [CrossRef] [MathSciNet]
  34. M.Y. Wang, S. Zhou and H. Ding, Nonlinear diffusions in topology optimization. Struct. Multidisc. Optim. 28 (2004) 262–276. [CrossRef]
  35. P. Wei and M.Y. Wang, Piecewise constant level set method for structural topology optimization. Int. J. Numer. Methods Eng. 78 (2009) 379–402. [CrossRef]
  36. Q. Xia and M.Y. Wang, Simultaneous optimization of the material properties and the topology of functionally graded structures. Comput. Aided Des. 40 (2008) 660–675. [CrossRef]
  37. S. Zhou and M.Y. Wang, Multimaterial structural topology optimization with a generalized Cahn–Hilliard model of multiphase transition. Struct. Multidisc. Optim. 33 (2007) 89–111. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.