Free Access
Volume 18, Number 1, January-March 2012
Page(s) 229 - 258
Published online 23 December 2010
  1. G. Allaire, Shape optimization by the homogenization method, Applied Mathematical Sciences 146. Springer-Verlag, New York (2002). [Google Scholar]
  2. G. Allaire, Topology Optimization with the Homogenization and the Level-Set Method, in Nonlinear Homogenization and its Applications to Composites, Polycrystals and Smart Materials, NATO Science Series II : Mathematics, Physics and Chemistry 170, Springer (2004) 1–13. [Google Scholar]
  3. G. Allaire, E. Bonnetier, G. Francfort and F. Jouve, Shape optimization by the homogenization method. Numer. Math. 76 (1997) 27–68. [CrossRef] [MathSciNet] [Google Scholar]
  4. G. Allaire, F. Jouve and A.-M. Toader, A level-set method for shape optimization. C. R. Acad. Sci. Paris, Sér. I 334 (2002) 1125–1130. [Google Scholar]
  5. G. Allaire, F. Jouve and H. Maillot, Topology optimization for minimum stress design with the homogenization method. Struct. Multidisc. Optim. 28 (2004) 87–98. [Google Scholar]
  6. G. Allaire, F. Jouve and A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194 (2004) 363–393. [CrossRef] [Google Scholar]
  7. G. Allaire, F. de Gournay, F. Jouve and A.-M. Toader, Structural optimization using topological and shape sensitivity via a level set method. Control Cybern. 34 (2005) 59–80. [Google Scholar]
  8. S.M. Allen and J.W. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27 (1979) 1085–1095. [CrossRef] [Google Scholar]
  9. L. Ambrosio and G. Buttazzo, An optimal design problem with perimeter penalization. Calc. Var. 1 (1993) 55–69. [Google Scholar]
  10. R. Ansola, E. Veguería, J. Canales and J.A. Tárrago, A simple evolutionary topology optimization procedure for compliant mechanism design. Finite Elements Anal. Des. 44 (2007) 53–62. [CrossRef] [Google Scholar]
  11. J.M. Ball, Convexity conditions and existence theorems in nonlinear elasiticity. Arch. Ration. Mech. Anal. 63 (1977) 337–403. [Google Scholar]
  12. J.M. Ball, Global invertibility of Sobolev functions and the interpenetration of matter. Proc. R. Soc. Edinb. A 88 (1981) 315–328. [Google Scholar]
  13. B. Bourdin and A. Chambolle, Design-dependent loads in topology optimization. ESAIM : COCV 9 (2003) 19–48. [Google Scholar]
  14. A. Braides, Γ-convergence for beginners, Oxford Lecture Series in Mathematics and its Applications 2. Oxford University Press, Oxford (2002). [Google Scholar]
  15. M. Burger and R. Stainko, Phase-field relaxation of topology optimization with local stress constraints. SIAM J. Control Optim. 45 (2006) 1447–1466. [CrossRef] [MathSciNet] [Google Scholar]
  16. A. Chambolle, A density result in two-dimensional linearized elasticity, and applications. Arch. Ration. Mech. Anal. 167 (2003) 211–233. [Google Scholar]
  17. Y. Chen, T.A. Davis, W.W. Hager and S. Rajamanickam, Algorithm 887 : CHOLMOD, supernodal sparse Cholesky factorization and update/downdate. ACM Trans. Math. Softw. 35 (2009) 22 :1–22 :14. [Google Scholar]
  18. P.G. Ciarlet, Three-dimensional elasticity. Elsevier Science Publishers B. V. (1988). [Google Scholar]
  19. A.R. Conn, N.I.M Gould and P.L. Toint, Trust-Region Methods. SIAM (2000). [Google Scholar]
  20. S. Conti, H. Held, M. Pach, M. Rumpf and R. Schultz, Risk averse shape optimization. SIAM J. Control Optim. (to appear). [Google Scholar]
  21. B. Dacorogna, Direct methods in the calculus of variations. Springer-Verlag, New York (1989). [Google Scholar]
  22. T.A. Davis and W.W. Hager, Dynamic supernodes in sparse Cholesky update/downdate and triangular solves. ACM Trans. Math. Softw. 35 (2009) 27 :1–27 :23. [CrossRef] [Google Scholar]
  23. G.P. Dias, J. Herskovits and F.A. Rochinha, Simultaneous shape optimization and nonlinear analysis of elastic solids, in Computational Mechanics – New Trends and Applications, E. Onate, I. Idelsohn and E. Dvorkin Eds., CIMNE, Barcelona (1998) 1–13. [Google Scholar]
  24. X. Guo, K. Zhao and M.Y. Wang, Simultaneous shape and topology optimization with implicit topology description functions. Control Cybern. 34 (2005) 255–282. [Google Scholar]
  25. Z. Liu, J.G. Korvink and R. Huang, Structure topology optimization : Fully coupled level set method via femlab. Struct. Multidisc. Optim. 29 (2005) 407–417. [Google Scholar]
  26. J.E. Marsden and T.J.R. Hughes, Mathematical Foundations of Elasticity. Prentice-Hall, Englewood Cliffs (1983). [Google Scholar]
  27. L. Modica and S. Mortola, Un esempio di Γ-convergenza. Boll. Un. Mat. Ital. B (5) 14 (1977) 285–299. [MathSciNet] [Google Scholar]
  28. P. Pedregal, Variational Methods in Nonlinear Elasticity. SIAM (2000). [Google Scholar]
  29. J.A. Sethian and A. Wiegmann, Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163 (2000) 489–528. [CrossRef] [MathSciNet] [Google Scholar]
  30. O. Sigmund and P.M. Clausen, Topology optimization using a mixed formulation : An alternative way to solve pressure load problems. Comput. Methods Appl. Mech. Eng. 196 (2007) 1874–1889. [Google Scholar]
  31. J. Sikolowski and J.-P. Zolésio, Introduction to shape optimization, in Shape sensitivity analysis, Springer (1992). [Google Scholar]
  32. M.Y. Wang and S. Zhou, Synthesis of shape and topology of multi-material structures with a phase-field method. J. Computer-Aided Mater. Des. 11 (2004) 117–138. [Google Scholar]
  33. M.Y. Wang, X. Wang and D. Guo, A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192 (2003) 227–246. [CrossRef] [MathSciNet] [Google Scholar]
  34. M.Y. Wang, S. Zhou and H. Ding, Nonlinear diffusions in topology optimization. Struct. Multidisc. Optim. 28 (2004) 262–276. [CrossRef] [Google Scholar]
  35. P. Wei and M.Y. Wang, Piecewise constant level set method for structural topology optimization. Int. J. Numer. Methods Eng. 78 (2009) 379–402. [CrossRef] [Google Scholar]
  36. Q. Xia and M.Y. Wang, Simultaneous optimization of the material properties and the topology of functionally graded structures. Comput. Aided Des. 40 (2008) 660–675. [CrossRef] [Google Scholar]
  37. S. Zhou and M.Y. Wang, Multimaterial structural topology optimization with a generalized Cahn–Hilliard model of multiphase transition. Struct. Multidisc. Optim. 33 (2007) 89–111. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.