Highlight
Free Access
Issue
ESAIM: COCV
Volume 18, Number 2, April-June 2012
Page(s) 318 - 342
DOI https://doi.org/10.1051/cocv/2011004
Published online 19 January 2011
  1. D. Auroux and J. Blum, Back and forth nudging algorithm for data assimilation problems. C. R. Acad. Sci. Paris Sér. I 340 (2005) 873–878. [Google Scholar]
  2. D. Auroux and J. Blum, A nudging-based data assimilation method for oceanographic problems : the back and forth nudging (BFN) algorithm. Nonlin. Proc. Geophys. 15 (2008) 305–319. [Google Scholar]
  3. D. Auroux and S. Bonnabel, Symmetry-based observers for some water-tank problems. IEEE Trans. Automat. Contr. (2010) DOI : 10.1109/TAC.2010.2067291. [Google Scholar]
  4. H. Brezis, Analyse fonctionnelle : théorie et applications. Dunod, Paris (1999). [Google Scholar]
  5. R. Courant and D. Hilbert, Methods of Mathematical Physics II. Wiley-Interscience (1962). [Google Scholar]
  6. L.C. Evans, Partial Differential Equations. American Mathematical Society, Providence (1998). [Google Scholar]
  7. G. Evensen and P.J. van Leeuwen, An ensemble Kalman smoother for nonlinear dynamics. Mon. Weather Rev. 128 (1999) 1852–1867. [CrossRef] [Google Scholar]
  8. B.-Z. Guo and W. Guo, The strong stabilization of a one-dimensional wave equation by non-collocated dynamic boundary feedback control. Automatica 45 (2009) 790–797. [CrossRef] [Google Scholar]
  9. B.-Z. Guo and Z.-C. Shao, Stabilization of an abstract second order system with application to wave equations under non-collocated control and observations. Syst. Control Lett. 58 (2009) 334–341. [CrossRef] [Google Scholar]
  10. J. Hoke and R.A. Anthes, The initialization of numerical models by a dynamic initialization technique. Mon. Weather Rev. 104 (1976) 1551–1556. [Google Scholar]
  11. R.E. Kalman, A new approach to linear filtering and prediction problems. Trans. ASME – J. Basic Eng. 82 (1960) 35–45. [Google Scholar]
  12. E. Kalnay, Atmospheric modeling, data assimilation and predictability. Cambridge University Press (2003). [Google Scholar]
  13. M. Krstic, L. Magnis and R. Vazquez, Nonlinear control of the viscous burgers equation : Trajectory generation, tracking, and observer design. J. Dyn. Sys. Meas. Control 131 (2009) 1–8. [Google Scholar]
  14. F.-X. Le Dimet, and O. Talagrand, Variational algorithms for analysis and assimilation of meteorological observations : theoretical aspects. Tellus 38A (1986) 97–110. [CrossRef] [Google Scholar]
  15. D. Luenberger, Observers for multivariable systems. IEEE Trans. Automat. Contr. 11 (1966) 190–197. [CrossRef] [Google Scholar]
  16. Ph. Moireau, D. Chapelle and P. Le Tallec, Filtering for distributed mechanical systems using position measurements : perspectives in medical imaging. Inver. Probl. 25 (2009) 035010. [Google Scholar]
  17. K. Ramdani, M. Tucsnak and G. Weiss, Recovering the initial state of an infinite-dimensional system using observers. Automatica 46 (2010) 1616–1625. [CrossRef] [MathSciNet] [Google Scholar]
  18. D.L. Russell, Controllability and stabilizability theory for linear partial differential equations : recent progress and open questions. SIAM Rev. 20 (1978) 639–739. [CrossRef] [MathSciNet] [Google Scholar]
  19. A. Smyshlyaev and M. Krstic, Backstepping observers for a class of parabolic PDEs. Syst. Control Lett. 54 (2005) 613–625. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.