Free Access
Issue
ESAIM: COCV
Volume 18, Number 3, July-September 2012
Page(s) 856 - 876
DOI https://doi.org/10.1051/cocv/2011184
Published online 14 October 2011
  1. E. Acerbi, V. Chiado Piat, G. Dal Maso and D. Percivale, An extension theorem from connected sets, and homogenization in general periodic domains. Nonlinear Anal. 18 (1992) 481–496. [CrossRef] [MathSciNet]
  2. G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482–1518. [CrossRef] [MathSciNet]
  3. G. Allaire, A. Damlamian and U. Hornung, Two-scale convergence on periodic surfaces and applications, in Proceedings of the International Conference on Mathematical Modelling of Flow through Porous Media, edited by A. Bourgeat et al., World Scientific Pub., Singapore (1996) 15–25.
  4. P. Bastian, A. Chavarría-Krauser, Ch. Engwer, W. Jäger, S. Marnach and M. Ptashnyk, Modelling in vitro growth of dense root networks. J. Theor. Biol. 254 (2008) 99–109. [CrossRef] [PubMed]
  5. M. Caloin and O. Yu, An extension of the logistic model of plant growth. Ann. Bot. 49 (1982) 599–607.
  6. A. Chavarria-Krauser and U. Schurr, A cellular growth model for root tips. J. Theor. Biol. 230 (2004) 21–32. [CrossRef] [PubMed]
  7. S. Chuai-Aree, W. Jäger, H.G. Bock and S. Siripant, Modeling, simulation and visualization of plant root growth and diffusion processes in soil volume, 4th International Workshop on Functional-Structural Plant Models, edited by C. Godin et al. Montpellier, France (2004) 289–293.
  8. D. Cioranescu and J. Saint Jean Paulin, Homogenization of reticulated structures. Springer (1999).
  9. L. Dupuy, T. Fourcaud, A. Stokes and F. Danjon, A density-based approach for the modelling of root architecture : application to Maritime pine (Pinus pinaster Ait.) root systems. J. Theor Biol. 236 (2005) 323–334. [CrossRef] [PubMed]
  10. L. Dupuy, P.J. Gregory and A.G. Bengough, Root growth models : towards a new generation of continuous approaches. J. Exp. Bot. 61 (2010) 2131–2143. [CrossRef] [PubMed]
  11. R.O. Erickson, Modeling of plant growth. Ann. Rev. Plant Physiol. 27 (1976) 407–434. [CrossRef]
  12. P. Grabarnik, L. Pagès and A.G. Bengough, Geometrical properties of simulated maize root systems : consequences for length density and intersection density. Plant Soil 200 (1998) 157–167. [CrossRef]
  13. A. Marciniak-Czochra and M. Ptashnyk, Derivation of a macroscopic receptor-based model using homogenization techniques, SIAM J. Math. Anal. 40 (2008) 215–237. [CrossRef] [MathSciNet]
  14. G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608–623. [CrossRef] [MathSciNet]
  15. L. Pagès, How to include organ interactions in models of the root system architecture? The concept of endogenous environment. Ann. For. Sci. 57 (2000) 535–541. [CrossRef] [EDP Sciences]
  16. L. Pagès, M.O. Jordan and D. Picard, A simulation-model of the three-dimensional architecture of the maize root-system. Plant Soil 1989 (1989) 147–154. [CrossRef]
  17. L. Pagès, G. Vercambre, J.-L. Drouet, F. Lecompte, C. Collet and J. Le Bot, Root Typ : a generic model to depict and analyse the root system architecture. Plant Soil 258 (2004) 103–119. [CrossRef]
  18. P. Prusinkiewicz, Modeling plant growth and development. Current Opinion in Plant Biol. 7 (2004) 79–83. [CrossRef] [PubMed]
  19. P. Prusinkiewicz and A. Lindenmayer, The algorithmic beauty of plants. Springer-Vergal, New York, USA (1990).
  20. O. Wilderotter, An adaptive numerical method for the Richards equation with root growth. Plant Soil 251 (2003) 255–267. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.