Free Access
Issue
ESAIM: COCV
Volume 18, Number 3, July-September 2012
Page(s) 856 - 876
DOI https://doi.org/10.1051/cocv/2011184
Published online 14 October 2011
  1. E. Acerbi, V. Chiado Piat, G. Dal Maso and D. Percivale, An extension theorem from connected sets, and homogenization in general periodic domains. Nonlinear Anal. 18 (1992) 481–496. [Google Scholar]
  2. G. Allaire, Homogenization and two-scale convergence. SIAM J. Math. Anal. 23 (1992) 1482–1518. [Google Scholar]
  3. G. Allaire, A. Damlamian and U. Hornung, Two-scale convergence on periodic surfaces and applications, in Proceedings of the International Conference on Mathematical Modelling of Flow through Porous Media, edited by A. Bourgeat et al., World Scientific Pub., Singapore (1996) 15–25. [Google Scholar]
  4. P. Bastian, A. Chavarría-Krauser, Ch. Engwer, W. Jäger, S. Marnach and M. Ptashnyk, Modelling in vitro growth of dense root networks. J. Theor. Biol. 254 (2008) 99–109. [CrossRef] [PubMed] [Google Scholar]
  5. M. Caloin and O. Yu, An extension of the logistic model of plant growth. Ann. Bot. 49 (1982) 599–607. [Google Scholar]
  6. A. Chavarria-Krauser and U. Schurr, A cellular growth model for root tips. J. Theor. Biol. 230 (2004) 21–32. [CrossRef] [PubMed] [Google Scholar]
  7. S. Chuai-Aree, W. Jäger, H.G. Bock and S. Siripant, Modeling, simulation and visualization of plant root growth and diffusion processes in soil volume, 4th International Workshop on Functional-Structural Plant Models, edited by C. Godin et al. Montpellier, France (2004) 289–293. [Google Scholar]
  8. D. Cioranescu and J. Saint Jean Paulin, Homogenization of reticulated structures. Springer (1999). [Google Scholar]
  9. L. Dupuy, T. Fourcaud, A. Stokes and F. Danjon, A density-based approach for the modelling of root architecture : application to Maritime pine (Pinus pinaster Ait.) root systems. J. Theor Biol. 236 (2005) 323–334. [CrossRef] [PubMed] [Google Scholar]
  10. L. Dupuy, P.J. Gregory and A.G. Bengough, Root growth models : towards a new generation of continuous approaches. J. Exp. Bot. 61 (2010) 2131–2143. [CrossRef] [PubMed] [Google Scholar]
  11. R.O. Erickson, Modeling of plant growth. Ann. Rev. Plant Physiol. 27 (1976) 407–434. [CrossRef] [Google Scholar]
  12. P. Grabarnik, L. Pagès and A.G. Bengough, Geometrical properties of simulated maize root systems : consequences for length density and intersection density. Plant Soil 200 (1998) 157–167. [CrossRef] [Google Scholar]
  13. A. Marciniak-Czochra and M. Ptashnyk, Derivation of a macroscopic receptor-based model using homogenization techniques, SIAM J. Math. Anal. 40 (2008) 215–237. [CrossRef] [MathSciNet] [Google Scholar]
  14. G. Nguetseng, A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20 (1989) 608–623. [CrossRef] [MathSciNet] [Google Scholar]
  15. L. Pagès, How to include organ interactions in models of the root system architecture? The concept of endogenous environment. Ann. For. Sci. 57 (2000) 535–541. [CrossRef] [EDP Sciences] [Google Scholar]
  16. L. Pagès, M.O. Jordan and D. Picard, A simulation-model of the three-dimensional architecture of the maize root-system. Plant Soil 1989 (1989) 147–154. [CrossRef] [Google Scholar]
  17. L. Pagès, G. Vercambre, J.-L. Drouet, F. Lecompte, C. Collet and J. Le Bot, Root Typ : a generic model to depict and analyse the root system architecture. Plant Soil 258 (2004) 103–119. [CrossRef] [Google Scholar]
  18. P. Prusinkiewicz, Modeling plant growth and development. Current Opinion in Plant Biol. 7 (2004) 79–83. [CrossRef] [PubMed] [Google Scholar]
  19. P. Prusinkiewicz and A. Lindenmayer, The algorithmic beauty of plants. Springer-Vergal, New York, USA (1990). [Google Scholar]
  20. O. Wilderotter, An adaptive numerical method for the Richards equation with root growth. Plant Soil 251 (2003) 255–267. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.