Free Access
Issue
ESAIM: COCV
Volume 18, Number 3, July-September 2012
Page(s) 877 - 888
DOI https://doi.org/10.1051/cocv/2011185
Published online 27 September 2011
  1. B.F. Bylov, B.M. Grobman, V.V. Nemyckii and R.E. Vinograd The Theory of Lyapunov Exponents. Nauka, Moscow (1966) (in Russian). [Google Scholar]
  2. D.J. Garling, Inequalities. A Jorney into Linear Analysis. Cambridge, Cambridge Univesity Press (2007). [Google Scholar]
  3. M.I. Gil, Stability of Finite and Infinite Dimensional Systems. Kluwer, NewYork (1998). [Google Scholar]
  4. M.I. Gil, The Aizerman-Myshkis problem for functional-differential equations with causal nonlinearities. Functional Differential Equations 11 (2005) 175–185. [Google Scholar]
  5. A. Halanay, Differential Equations: Stability. Oscillation, Time Lags. Academic Press, NY (1966) [Google Scholar]
  6. J.K. Hale and S.M.V. Lunel, Introduction to Functional Differential Equations. Springer, New York (1993). [Google Scholar]
  7. N.A. Izobov, Linear systems of ordinary differential equations. Itogi Nauki i Tekhniki. Mat. Analis. 12 (1974) 71–146 (Russian). [Google Scholar]
  8. V. Kolmanovskii and A. Myshkis, Applied Theory of Functional Differential Equations. Kluwer (1999). [Google Scholar]
  9. S.G. Krein, Linear Equations in a Banach Space. Nauka, Moscow (1971) (in Russian). [Google Scholar]
  10. M. Marcus and H. Minc, A Survey of Matrix Theory and Matrix Inequalities. Allyn and Bacon, Boston (1964). [Google Scholar]
  11. J.-P. Richard, Time-delay systems: an overview of some recent advances and open problems. Automatica 39 (2003) 1667–1694. [CrossRef] [MathSciNet] [Google Scholar]
  12. R. Vinograd, An improved estimate in the method of freezing. Proc. Amer. Soc. 89 (1983) 125–129. [Google Scholar]
  13. A. Zevin and M. Pinsky, Delay-independent stability conditions for time-varying nonlinear uncertain systems. IEEE Trans. Automat. Contr. 51 (2006) 1482–1485. [CrossRef] [Google Scholar]
  14. A. Zevin and M. Pinsky, Sharp bounds for Lyapunov exponents and stability conditions for uncertain systems with delays. IEEE Trans. Automat. Contr. 55 (2010) 1249–1253. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.