Free Access
Issue
ESAIM: COCV
Volume 18, Number 4, October-December 2012
Page(s) 1097 - 1121
DOI https://doi.org/10.1051/cocv/2011191
Published online 16 January 2012
  1. P. Biler and J. Dolbeault, Long time behavior of solutions to Nernst-Planck and Debye-Hückel drift-diffusion system. Ann. Henri Poincaré 1 (2000) 461−472. [CrossRef] [MathSciNet] [Google Scholar]
  2. P. Biler and N. Nadzieja, Existence and nonexistence of solutions for a model of gravitational interactions of particles I. Colloq. Math. 66 (1994) 319−334. [MathSciNet] [Google Scholar]
  3. P. Biler and N. Nadzieja, A singular problem in electrolytes theory. Math. Methods Appl. Sci. 20 (1997) 767–782. [CrossRef] [Google Scholar]
  4. P. Biler, G. Karch, P. Laurençot and T. Nadzieja, The 8π-problem for radially symmetric solutions of a chemotaxis model in the plane. Math. Methods Appl. Sci. 29 (2006) 1563–1583. [CrossRef] [MathSciNet] [Google Scholar]
  5. S. Childress and J.K. Percus, Nonlinear aspects of chemotaxis, Math. Biosci. 56 (1981) 217–237. [CrossRef] [MathSciNet] [Google Scholar]
  6. R. Farwig and H. Sohr, Weighted Lq-theory for the Stokes resolvent in exterior domains. J. Math. Soc. Jpn 49 (1997) 251–288. [CrossRef] [Google Scholar]
  7. M. Escobedo and E. Zuazua, Large time behavior for convection-diffusion equations in ℝN. J. Funct. Anal. 100 (1991) 119–161. [CrossRef] [MathSciNet] [Google Scholar]
  8. S. Kawashima, S. Nishibata and M. Nishikawa, Lp energy method for multi-dimensional viscous conservation laws and application to the stability of planar waves. J. Hyperbolic Differ. Equ. 1 (2004) 581–603. [CrossRef] [MathSciNet] [Google Scholar]
  9. E.F. Keller and L.A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol. 26 (1970) 399–415. [CrossRef] [PubMed] [Google Scholar]
  10. R. Kobayashi and S. Kawashima, Decay estimates and large time behavior of solutions to the drift-diffusion system. Funkcial. Ekvac. 51 (2008) 371–394. [CrossRef] [MathSciNet] [Google Scholar]
  11. R. Kobayashi, M. Kurokiba and S. Kawashima, Stationary solutions to the drift-diffusion model in the whole space. Math. Methods Appl. Sci. 32 (2009) 640–652. [CrossRef] [Google Scholar]
  12. M. Kurokiba and T. Ogawa, Lp wellposedness for the drift-diffusion system arising from the semiconductor device simulation. J. Math. Anal. Appl. 342 (2008) 1052–1067. [CrossRef] [Google Scholar]
  13. D.S. Kurtz and R.L. Wheeden, Results on weighted norm inequalities for multipliers, Trans. Amer. Math. Soc. 255 (1979) 343–362. [CrossRef] [MathSciNet] [Google Scholar]
  14. M.S. Mock, Asymptotic behavior of solutions of transport equations for semiconductor devices, J. Math. Anal. Appl. 49 (1975) 215–225. [CrossRef] [Google Scholar]
  15. T. Nagai, Global existence and decay estimates of solutions to a parabolic-elliptic system of drift-diffusion type in ℝ2. Differential Integral Equations 24 (2011) 29–68. [MathSciNet] [Google Scholar]
  16. L. Nirenberg, On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa 13 (1959) 115–162. [MathSciNet] [Google Scholar]
  17. A. Raczyński, Weak-Lp solutions for a model of self-gravitating particles with an external potential. Stud. Math. 179 (2007) 199–216. [CrossRef] [Google Scholar]
  18. D.R. Smart, Fixed Point Theorems. Cambridge University Press, New York (1974). [Google Scholar]
  19. E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970). [Google Scholar]
  20. G. Wolansky, On steady distributions of self-attracting clusters under friction and fluctuations, Arch. Rational Mech. Anal. 119 (1992) 355–391. [CrossRef] [MathSciNet] [Google Scholar]
  21. W.P. Ziemer, Weakly Differentiable Functions. Springer-Verlag, New York (1989). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.