Free Access
Volume 18, Number 4, October-December 2012
Page(s) 1178 - 1206
Published online 16 January 2012
  1. F.J. Almgren, W. Browder and E.H. Lieb, Co-area, liquid crystals, and minimal surfaces, in Partial Differential Equations, Lecture Notes in Math. 1306. Springer (1988) 1–22. [Google Scholar]
  2. F. Bethuel, The approximation problem for Sobolev maps between manifolds. Acta Math. 167 (1992) 153–206. [CrossRef] [MathSciNet] [Google Scholar]
  3. H. Brezis, J.M. Coron and E.H. Lieb, Harmonic maps with defects. Comm. Math. Phys. 107 (1986) 649–705. [CrossRef] [MathSciNet] [Google Scholar]
  4. H. Federer, Geometric measure theory, Grundlehren Math. Wissen. 153. Springer, New York (1969). [Google Scholar]
  5. H. Federer and W. Fleming, Normal and integral currents. Annals of Math. 72 (1960) 458–520. [CrossRef] [Google Scholar]
  6. M. Giaquinta and G. Modica, On sequences of maps with equibounded energies. Calc. Var. 12 (2001) 213–222. [CrossRef] [MathSciNet] [Google Scholar]
  7. M. Giaquinta, G. Modica and J. Souček, Cartesian currents in the calculus of variations, I, II, Ergebnisse Math. Grenzgebiete (III Ser.) 37, 38. Springer, Berlin (1998). [Google Scholar]
  8. M. Giaquinta and D. Mucci, Density results relative to the Dirichlet energy of mappings into a manifold. Comm. Pure Appl. Math. 59 (2006) 1791–1810. [CrossRef] [MathSciNet] [Google Scholar]
  9. M. Giaquinta and D. Mucci, Maps into manifolds and currents : area and W1,2-, W1/2-, BV-energies, Edizioni della Normale. C.R.M. Series, Sc. Norm. Sup. Pisa (2006). [Google Scholar]
  10. J. Sacks and K. Uhlenbeck, The existence of minimal immersions of 2-spheres. Annals of Math. 113 (1981) 1–24. [Google Scholar]
  11. R. Schoen and K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps. J. Diff. Geom. 18 (1983) 253–268. [Google Scholar]
  12. L. Simon, Lectures on geometric measure theory, Proc. of the Centre for Math. Analysis 3. Australian National University, Canberra (1983). [Google Scholar]
  13. U. Tarp-Ficenc, On the minimizers of the relaxed energy functionals of mappings from higher dimensional balls into S2. Calc. Var. Partial Differential Equations 23 (2005) 451–467. [CrossRef] [MathSciNet] [Google Scholar]
  14. E.G. Virga, Variational theories for liquid crystals, Applied Mathematics and Mathematical Computation 8. Chapman & Hall, London (1994). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.