Free Access
Issue
ESAIM: COCV
Volume 18, Number 4, October-December 2012
Page(s) 1178 - 1206
DOI https://doi.org/10.1051/cocv/2011195
Published online 16 January 2012
  1. F.J. Almgren, W. Browder and E.H. Lieb, Co-area, liquid crystals, and minimal surfaces, in Partial Differential Equations, Lecture Notes in Math. 1306. Springer (1988) 1–22.
  2. F. Bethuel, The approximation problem for Sobolev maps between manifolds. Acta Math. 167 (1992) 153–206. [CrossRef] [MathSciNet]
  3. H. Brezis, J.M. Coron and E.H. Lieb, Harmonic maps with defects. Comm. Math. Phys. 107 (1986) 649–705. [CrossRef] [MathSciNet]
  4. H. Federer, Geometric measure theory, Grundlehren Math. Wissen. 153. Springer, New York (1969).
  5. H. Federer and W. Fleming, Normal and integral currents. Annals of Math. 72 (1960) 458–520. [CrossRef]
  6. M. Giaquinta and G. Modica, On sequences of maps with equibounded energies. Calc. Var. 12 (2001) 213–222. [CrossRef] [MathSciNet]
  7. M. Giaquinta, G. Modica and J. Souček, Cartesian currents in the calculus of variations, I, II, Ergebnisse Math. Grenzgebiete (III Ser.) 37, 38. Springer, Berlin (1998).
  8. M. Giaquinta and D. Mucci, Density results relative to the Dirichlet energy of mappings into a manifold. Comm. Pure Appl. Math. 59 (2006) 1791–1810. [CrossRef] [MathSciNet]
  9. M. Giaquinta and D. Mucci, Maps into manifolds and currents : area and W1,2-, W1/2-, BV-energies, Edizioni della Normale. C.R.M. Series, Sc. Norm. Sup. Pisa (2006).
  10. J. Sacks and K. Uhlenbeck, The existence of minimal immersions of 2-spheres. Annals of Math. 113 (1981) 1–24. [CrossRef]
  11. R. Schoen and K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps. J. Diff. Geom. 18 (1983) 253–268.
  12. L. Simon, Lectures on geometric measure theory, Proc. of the Centre for Math. Analysis 3. Australian National University, Canberra (1983).
  13. U. Tarp-Ficenc, On the minimizers of the relaxed energy functionals of mappings from higher dimensional balls into S2. Calc. Var. Partial Differential Equations 23 (2005) 451–467. [CrossRef] [MathSciNet]
  14. E.G. Virga, Variational theories for liquid crystals, Applied Mathematics and Mathematical Computation 8. Chapman & Hall, London (1994).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.