Free Access
Issue |
ESAIM: COCV
Volume 18, Number 4, October-December 2012
|
|
---|---|---|
Page(s) | 1150 - 1177 | |
DOI | https://doi.org/10.1051/cocv/2011202 | |
Published online | 16 January 2012 |
- A. Agrachev and Y. Sachkov, Control Theory from Geometric Viewpoint, Encyclopedia of Mathematical Science 87. Springer (2004). [Google Scholar]
- A. Agrachev, H. Chakir EL Alaoui, and J.P. Gauthier, Sub-Riemannian Metrics on R3, Canadian Mathematical Society Conference Proceedings 25 (1998) 29–78. [Google Scholar]
- A. Bellaïche, The Tangent Space in the sub-Riemannian Geometry, in Sub-Riemannian Geometry. Birkhäuser (1996). [Google Scholar]
- B. Bonnard and M. Chyba, Singular Trajectories and their Role in Control Theory. Springer-Verlag, Berlin (2003). [Google Scholar]
- A. Bressan and B. Piccoli, Introduction to Mathematical Theory of Control. Ameracan Institut of Mathematical Sciences (2007). [Google Scholar]
- M. Grochowski, Normal forms of germes of contact sub-Lorentzian structures on R3. Differentiability of the sub-Lorentzian distance. J. Dyn. Control Syst. 9 (2003) 531–547. [CrossRef] [Google Scholar]
- M. Grochowski, Properties of reachable sets in the sub-Lorentzian geometry. J. Geom. Phys. 59 (2009) 885–900. [CrossRef] [MathSciNet] [Google Scholar]
- M. Grochowski, Reachable sets for contact sub-Lorentzian structures on R3. Application to control affine systems on R3 with a scalar input. J. Math. Sci. 177 (2011) 383–394. [CrossRef] [MathSciNet] [Google Scholar]
- M. Grochowski, Normal forms and reachable sets for analytic martinet sub-Lorentzian structures of Hamiltonian type. J. Dyn. Control Syst. 17 (2011) 49–75. [CrossRef] [MathSciNet] [Google Scholar]
- B. Jakubczyk and M. Zhitomorskii, Singularities and normal forms of generic 2-distributions on 3-manifolds. Stud. Math. 113 (1995) 223–248. [Google Scholar]
- A. Korolko and I. Markina, Nonholonomic Lorentzian geometry on some H-type groups. J. Geom. Anal. 19 (2009) 864–889. [CrossRef] [MathSciNet] [Google Scholar]
- W. Liu and H. Sussmann, Shortest paths for sub-Riemannian metrics on Rank-Two distributions. Memoires of the American Mathematical Society 118 (1995) 1–104. [Google Scholar]
- S. Łojasiewicz, Ensembles semi-analytiques. Inst. Hautes Études Sci., Bures-sur-Yvette, France (1964) [Google Scholar]
- M. Zhitomirskii, Typical Singularities of Differential 1-Forms and Pfaffian Equations, Translations of Math. Monographs 113. Amer. Math. Soc. Providence (1991). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.