Free Access
Issue
ESAIM: COCV
Volume 19, Number 1, January-March 2013
Page(s) 20 - 42
DOI https://doi.org/10.1051/cocv/2011196
Published online 23 February 2012
  1. A. Bensoussan, G. Da Prato, M.C. Delfour and S.K. Mitter, Representation and control of infinite-dimensional systems, Systems & Control : Foundations & Applications 1. Birkhäuser Boston Inc., Boston, MA (1992). [Google Scholar]
  2. M. Boulakia and A. Osses, Local null controllability of a two-dimensional fluid-structure interaction problem. ESAIM : COCV 14 (2008) 1–42. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  3. S. Dolecki and D.L. Russell, A general theory of observation and control. SIAM J. Control Optim. 15 (1977) 185–220. [CrossRef] [MathSciNet] [Google Scholar]
  4. A. Doubova and E. Fernández-Cara, Some control results for simplified one-dimensional models of fluid-solid interaction. Math. Models Methods Appl. Sci. 15 (2005) 783–824. [CrossRef] [Google Scholar]
  5. H.O. Fattorini and D.L. Russell, Exact controllability theorems for linear parabolic equations in one space dimension. Arch. Rational Mech. Anal. 43 (1971) 272–292. [MathSciNet] [Google Scholar]
  6. A.V. Fursikov and O.Yu. Imanuvilov, Controllability of Evolution Equations, Lecture Notes Series 34. Seoul National University Research Institute of Mathematics, Global Analysis Research Center, Seoul (1996). [Google Scholar]
  7. F. Gozzi and P. Loreti. Regularity of the minimum time function and minimum energy problems : the linear case. SIAM J. Control Optim. 37 (1999) 1195–1221 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  8. O. Imanuvilov and T. Takahashi, Exact controllability of a fluid-rigid body system. J. Math. Pures Appl. (9) 87 (2007) 408–437. [CrossRef] [MathSciNet] [Google Scholar]
  9. O.Y. Imanuvilov, Remarks on exact controllability for the Navier-Stokes equations. ESAIM : COCV 6 (2001) 39–72 (electronic). [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  10. G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur. Comm. Partial Differential Equations 20 (1995) 335–356. [CrossRef] [MathSciNet] [Google Scholar]
  11. L. Miller, A direct Lebeau-Robbiano strategy for the observability of heat-like semigroups. Discrete Contin. Dyn. Syst., Ser. B 14 (2010) 1465–1485. [CrossRef] [MathSciNet] [Google Scholar]
  12. J.-C. Saut and B. Scheurer, Unique continuation for some evolution equations. J. Differential Equations 66 (1987) 118–139. [CrossRef] [MathSciNet] [Google Scholar]
  13. G. Tenenbaum and M. Tucsnak, On the null-controllability of diffusion equations. ESAIM : COCV 17 (2011) 1088–1100. [CrossRef] [EDP Sciences] [Google Scholar]
  14. G. Tenenbaum and M. Tucsnak, New blow-up rates for fast controls of Schrödinger and heat equations. J. Differential Equations 243 (2007) 70–100. [CrossRef] [MathSciNet] [Google Scholar]
  15. M. Tucsnak and G. Weiss, Observation and control for operator semigroups. Birkhäuser Advanced Texts : Basler Lehrbücher [Birkhäuser Advanced Texts : Basel Textbooks], Birkhäuser Verlag, Basel (2009). [Google Scholar]
  16. J.L. Vázquez and E. Zuazua, Large time behavior for a simplified 1D model of fluid-solid interaction. Comm. Partial Differential Equations 28 (2003) 1705–1738. [CrossRef] [MathSciNet] [Google Scholar]
  17. J.L. Vázquez and E. Zuazua, Lack of collision in a simplified 1D model for fluid-solid interaction. Math. Models Methods Appl. Sci. 16 (2006) 637–678. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.