Free Access
Volume 19, Number 1, January-March 2013
Page(s) 190 - 218
Published online 27 March 2012
  1. R.A. Adams and J.J.F. Fournier, Sobolev spaces. Academic Press (2003).
  2. L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press (2000).
  3. A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2 (2009) 183–202. [CrossRef]
  4. T. Bonesky, K.S. Kazimierski, P. Maass, F. Schöpfer and T. Schuster, Minimization of Tikhonov functionals in Banach spaces. Abstr. Appl. Anal. (2008) 192679.
  5. K. Bredies and D.A. Lorenz, Iterated hard shrinkage for minimization problems with sparsity constraints. SIAM J. Sci. Comput. 30 (2008) 657–683. [CrossRef]
  6. K. Bredies and D.A. Lorenz, Linear convergence of iterative soft-thresholding. J. Fourier Anal. Appl. 14 (2008) 813–837. [CrossRef]
  7. K. Bredies, D.A. Lorenz and P. Maass, A generalized conditional gradient method and its connection to an iterative shrinkage method. Comput. Optim. Appl. 42 (2009) 173–193. [CrossRef]
  8. K. Bredies, T. Alexandrov, J. Decker, D.A. Lorenz and H. Thiele, Sparse deconvolution for peak picking and ion charge estimation in mass spectrometry, in Progress in Industrial Mathematics at ECMI 2008, edited by H.-G. Bock et al., Springer (2010) 287–292.
  9. M. Burger and S. Osher, Convergence rates of convex variational regularization. Inverse Prob. 20 (2004) 1411–1421. [CrossRef]
  10. E.J. Candès, J.K. Romberg and T. Tao, Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math. 59 (2006) 1207–1223. [CrossRef] [MathSciNet]
  11. C. Clason and K. Kunisch, A duality-based approach to elliptic control problems in non-reflexive Banach spaces. ESAIM : COCV 17 (2011) 243–266. [CrossRef] [EDP Sciences]
  12. P.L. Combettes and V.R. Wajs, Signal recovery by proximal forward-backward splitting. Multiscale Model. Simul. 4 (2005) 1168–1200. [CrossRef]
  13. J.B. Conway, A course in functional analysis. Springer (1990).
  14. I. Daubechies, M. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint Comm. Pure Appl. Math. 57 (2004) 1413–1457. [CrossRef] [MathSciNet]
  15. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52 (2006) 1289–1306. [CrossRef] [MathSciNet]
  16. D.L. Donoho, M. Elad and V.N. Temlyakov, Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inf. Theory 52 (2006) 6–18. [CrossRef]
  17. C. Dossal and S. Mallat, Sparse spike deconvolution with minimum scale, in Proc. of SPARS’05 (2005).
  18. N. Dunford and J.T. Schwartz, Linear Operators. I. General Theory. Interscience Publishers (1958).
  19. B. Efron, T. Hastie, I. Johnstone and R. Tibshirani, Least angle regression. Ann. Statist. 32 (2004) 407–499. [CrossRef] [MathSciNet]
  20. I. Ekeland and R. Temam, Convex analysis and variational problems. North-Holland (1976).
  21. H.W. Engl and G. Landl, Convergence rates for maximum entropy regularization. SIAM J. Numer. Anal. 30 (1993) 1509–1536. [CrossRef] [MathSciNet]
  22. H.W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems. Kluwer Academic Publishers (1996).
  23. M.A.T. Figueiredo, R.D. Nowak and S.J. Wright, Gradient projection for sparse reconstruction : Application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1 (2007) 586–597. [CrossRef]
  24. I. Fonseca and G. Leoni, Modern methods in the calculus of variations : Lp spaces. Springer (2007).
  25. M. Fornasier and H. Rauhut, Recovery algorithms for vector valued data with joint sparsity constraints. SIAM J. Numer. Anal. 46 (2008) 577–613. [CrossRef] [MathSciNet]
  26. J.-J. Fuchs, On sparse representations in arbitrary redundant bases. IEEE Trans. Inf. Theory. 50 (2004) 1341–1344. [CrossRef]
  27. A.L. Gibbs and F.E. Su, On choosing and bounding probability metrics. Int. Stat. Rev. 70 (2002) 419–435. [CrossRef]
  28. M. Grasmair, M. Haltmeier and O. Scherzer, Sparse regularization with q penalty term. Inverse Prob. 24 (2008) 055020. [CrossRef]
  29. R. Griesse and D.A. Lorenz, A semismooth Newton method for Tikhonov functionals with sparsity constraints. Inverse Prob. 24 (2008) 035007. [CrossRef]
  30. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman Publishing Limited (1985).
  31. T. Hein, Tikhonov regularization in Banach spaces – improved convergence rates results. Inverse Prob. 25 (2009) 035002. [CrossRef]
  32. B. Hofmann, B. Kaltenbacher, C. Pöschl and O. Scherzer, A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators. Inverse Prob. 23 (2007) 987–1010. [CrossRef]
  33. L. Hörmander, The Analysis of Linear Partial Differential Operators I. Springer-Verlag (1990).
  34. V.K. Ivanov, V.V. Vasin and V.P. Tanana, Theory of linear ill-posed problems and its applications, 2nd edition. Inverse and Ill-posed Problems Series, VSP, Utrecht (2002).
  35. H. Lee, A. Battle, R. Raina and A.Y. Ng, Efficient sparse coding algorithms, in Advances in Neural Information Processing Systems, edited by B. Schölkopf, J. Platt and T. Hoffman. MIT Press 19 (2007) 801–808.
  36. J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II. Function Spaces. Springer (1979).
  37. D.A. Lorenz, Convergence rates and source conditions for Tikhonov regularization with sparsity constraints. J. Inverse Ill-Posed Probl. 16 (2008) 463–478. [CrossRef] [MathSciNet]
  38. D.A. Lorenz and D. Trede, Optimal convergence rates for Tikhonov regularization in Besov scales. Inverse Prob. 24 (2008) 055010. [CrossRef]
  39. D.A. Lorenz and D. Trede, Greedy deconvolution of point-like objects, in Proc. of SPARS’09 (2009).
  40. Y. Mao, B. Dong and S. Osher, A nonlinear PDE-based method for sparse deconvolution. Multiscale Model. Simul. 8 (2010) 965–976. [CrossRef]
  41. L.M. Mugnier, T. Fusco and J.-M. Conan, MISTRAL : a myopic edge-preserving image restoration method, with application to astronomical adaptive-optics-corrected long-exposure images. J. Opt. Soc. Am. A 21 (2004) 1841–1854. [NASA ADS] [CrossRef]
  42. Y.E. Nesterov, A method of solving a convex programming problem with convergence rate O(1/k2). Soviet Math. Dokl. 27 (1983) 372–376.
  43. A. Neubauer, On enhanced convergence rates for Tikhonov regularization of nonlinear ill-posed problems in Banach spaces. Inverse Prob. 25 (2009) 065009. [CrossRef]
  44. E. Resmerita and O. Scherzer, Error estimates for non-quadratic regularization and the relation to enhancement. Inverse Prob. 22 (2006) 801–814. [CrossRef]
  45. O. Scherzer and B. Walch, Sparsity regularization for Radon measures, in Scale Space and Variational Methods in Computer Vision, edited by X.-C. Tai, K. Morken, M. Lysaker and K.-A. Lie. Springer-Verlag (2009) 452–463.
  46. G. Stadler, Elliptic optimal control problems with L1-control cost and applications for the placement of control devices. Comput. Optim. Appl. 44 (2009) 159–181. [CrossRef]
  47. G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15 (1965) 189–258. [CrossRef] [MathSciNet]
  48. A.S. Stern, D.L. Donoho and J.C. Hoch, NMR data processing using iterative thresholding and minimum l1-norm reconstruction. J. Magn. Reson. 188 (2007) 295–300. [CrossRef] [PubMed]
  49. A.N. Tikhonov, A.S. Leonov and A.G. Yagola, Nonlinear ill-posed problems 1. Chapman & Hall (1998).
  50. Z.B. Xu and G.F. Roach, Characteristic inequalities of uniformly convex and uniformly smooth Banach spaces. J. Math. Anal. Appl. 157 (1991) 189–210. [CrossRef]
  51. C. Zălinescu, Convex analysis in general vector spaces. World Scientific (2002).
  52. E. Zeidler, Nonlinear Functional Analysis and its Applications III. Springer-Verlag (1985).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.