Free Access
Volume 19, Number 1, January-March 2013
Page(s) 219 - 238
Published online 02 May 2012
  1. F. Abergel and E. Casas, Some optimal control problems of multistate equations appearing in fluid mechanics. RAIRO Modél. Math. Anal. Numér. 27 (1993) 223–247. [MathSciNet] [Google Scholar]
  2. N. Arada, Optimal Control of shear-thickening flows. Departamento de Matemática, FCT-UNL, Portugal, Technical Report 3 (2012). [Google Scholar]
  3. E. Casas, Boundary control problems for quasi-linear elliptic equations : a Pontryagin’s principle. Appl. Math. Optim. 33 (1996) 265–291. [CrossRef] [MathSciNet] [Google Scholar]
  4. E. Casas and L.A. Fernández, Boundary control of quasilinear elliptic equations. INRIA, Rapport de Recherche 782 (1988). [Google Scholar]
  5. E. Casas and L.A. Fernández, Distributed control of systems governed by a general class of quasilinear elliptic equations. J. Differ. Equ. 35 (1993) 20–47. [CrossRef] [Google Scholar]
  6. J.C. De Los Reyes and R. Griesse, State-constrained optimal control of the three-dimensional stationary Navier-Stokes equations. J. Math. Anal. Appl. 343 (2008) 257–272. [CrossRef] [Google Scholar]
  7. J. Frehse, J. Málek and M. Steinhauer, An existence result for fluids with shear dependent viscosity-steady flows. Nonlinear. Anal. 30 (1997) 3041–3049. [CrossRef] [MathSciNet] [Google Scholar]
  8. G.P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations, I, II, 2nd edition. Springer-Verlag, New York. Springer Tracts in Natural Philosophy 38, 39 (1998). [Google Scholar]
  9. M.D. Gunzburger and C. Trenchea, Analysis of an optimal control problem for the three-dimensional coupled modified Navier-Stokes and maxwell equations. J. Math. Anal. Appl. 333 (2007) 295–310. [CrossRef] [Google Scholar]
  10. M.D. Gunzburger, L. Hou and T.P. Svobodny, Boundary velocity control of incompressible flow with an application to viscous drag reduction. SIAM J. Control Optim. 30 (1992) 167–181. [CrossRef] [MathSciNet] [Google Scholar]
  11. C.O. Horgan, Korn’s inequalities and their applications in continuum mechanics. SIAM Rev. 37 (1995) 491–511. [CrossRef] [MathSciNet] [Google Scholar]
  12. O.A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow. Gordon and Beach, New York (1969). [Google Scholar]
  13. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Gauthier-Villars, Paris (1969). [Google Scholar]
  14. P. Kaplický, J. Málek and J. Stará, C1,α-solutions to a class of nonlinear fluids in two dimensions-stationary Dirichlet problem. Zap. Nauchn. Sem. POMI 259 (1999) 89–121. [Google Scholar]
  15. K. Kunisch and X. Marduel, Optimal control of non-isothermal viscoelastic fluid flow. J. Non-Newton. Fluid Mech. 88 (2000) 261–301. [Google Scholar]
  16. J. Nečas, J. Málek, J. Rokyta and M. Ružička, Weak and measure-valued solutions to evolutionary partial differential equations, Chapmann and Hall, London. Appl. Math. Math. Comput. 13 (1996). [Google Scholar]
  17. T. Roubcíěk and F. Tröltzsch, Lipschitz stability of optimal controls for the steady-state Navier-Stokes equations. Control Cybernet. 32 (2003) 683–705. [Google Scholar]
  18. T. Slawig, Distributed control for a class of non-Newtonian fluids. J. Differ. Equ. 219 (2005) 116–143. [CrossRef] [Google Scholar]
  19. D. Wachsmuth and T. Roubcíěk, Optimal control of incompressible non-Newtonian fluids. Z. Anal. Anwend. 29 (2010) 351–376. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.