Free Access
Issue
ESAIM: COCV
Volume 19, Number 1, January-March 2013
Page(s) 239 - 254
DOI https://doi.org/10.1051/cocv/2012005
Published online 02 May 2012
  1. L. Ahlfors and L. Bers, Riemann’s mapping theorem for variable metrics. Ann. Math. 72 (1960) 265–296.
  2. G. Alessandrini and L. Escauriaza, Null-controllability of one-dimensional parabolic equations. ESAIM : COCV 14 (2008) 284–293. [CrossRef] [EDP Sciences]
  3. K. Astala, Area distortion under quasiconformal mappings. Acta Math. 173 (1994) 37–60. [CrossRef] [MathSciNet]
  4. A. Benabdallah and M.G. Naso, Null controllability of a thermoelastic plate. Abstr. Appl. Anal. 7 (2002) 585–599. [CrossRef] [MathSciNet]
  5. A. Benabdallah, Y. Dermenjian and J. Le Rousseau, On the controllability of linear parabolic equations with an arbitrary control location for stratified media. C. R. Acad. Sci. Paris, Sér. 1 344 (2007) 357–362. [CrossRef]
  6. L. Bers and L. Nirenberg, On a representation theorem for linear elliptic systems with discontinuous coefficients and applications, in Convegno Internazionale sulle Equazioni alle Derivate Parziali. Cremonese, Roma (1955) 111–138.
  7. L. Bers, F. John and M. Schechter, Partial Differential Equations. Interscience. New York (1964).
  8. S. Cho, H. Dong and S. Kim, Global estimates for Green’s matrix of second order parabolic systems with application to elliptic systems in two dimensional domains. Potential Anal. 36 (2012) 339–372. [CrossRef] [MathSciNet]
  9. L.C. Evans, Partial differential equations. American Mathematical Society, Providence, RI (1998).
  10. A. Fursikov and O.Yu. Imanuvilov, Controllability of Evolution Equations. Seoul National University, Korea. Lect. Notes Ser. 34 (1996).
  11. M. Giaquinta, Multiple integrals in the calculus of variations and nonlinear elliptic systems. Princeton University Press (1983).
  12. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition. Springer-Verlag (1983).
  13. F. John, Plane Waves and Spherical Means Applied to Partial Differential Equations. Interscience Publishers, Inc., New York (1955).
  14. F. John, Partial Differential Equations. Springer-Verlag, New York (1982).
  15. M. Léautaud, Spectral inequalities for non-selfadjoint elliptic operators and application to the null-controllability of parabolic systems. J. Funct. Anal. 258 (2010) 2739–2778. [CrossRef] [MathSciNet]
  16. G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur. Commun. Partial Differ. Equ. 20 (1995) 335–356. [CrossRef] [MathSciNet]
  17. G. Lebeau and E. Zuazua, Null controllability of a system of linear thermoelasticity. Arch. Rational Mech. Anal. 141 (1998) 297–329. [CrossRef] [MathSciNet]
  18. E. Malinnikova, Propagation of smallness for solutions of generalized Cauchy-Riemann systems. Proc. Edinb. Math. Soc. 47 (2004) 191–204. [CrossRef] [MathSciNet]
  19. A.I. Markushevich, Theory of Functions of a Complex Variable. Prentice Hall, Englewood Cliffs, NJ (1965).
  20. L. Miller, On the controllability of anomalous diffusions generated by the fractional laplacian. Math. Control Signals Syst. 3 (2006) 260–271. [CrossRef] [MathSciNet]
  21. C.B. Morrey, Multiple Integrals in the Calculus of Variations. Springer (1966).
  22. C.B. Morrey and L. Nirenberg, On the analyticity of the solutions of linear elliptic systems of partial differential equations. Commun. Pure Appl. Math. X (1957) 271–290. [CrossRef] [MathSciNet]
  23. N.S. Nadirashvili, A generalization of Hadamard’s three circles theorem. Mosc. Univ. Math. Bull. 31 (1976) 30–32.
  24. N.S. Nadirashvili, Estimation of the solutions of elliptic equations with analytic coefficients which are bounded on some set. Mosc. Univ. Math. Bull. 34 (1979) 44–48.
  25. J. Le Rousseau and G. Lebeau, On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations. ESAIM : COCV, doi:10.1051/cocv/2011168.
  26. J. Le Rousseau and L. Robbiano, Local and global Carleman estimates for parabolic operators with coefficients with jumps at interfaces. Invent. Math. 183 (2011) 245–336. [CrossRef] [MathSciNet]
  27. D.L. Russel, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations. Stud. Appl. Math. 52 (1973) 189–221.
  28. S. Vessella, A continuous dependence result in the analytic continuation problem. Forum Math. 11 (1999) 695–703. [CrossRef] [MathSciNet]
  29. H.F. Weinberger, A first course in partial differential equations with complex variables and transform methods. Dover Publications, New York (1995).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.