Free Access
Issue
ESAIM: COCV
Volume 19, Number 1, January-March 2013
Page(s) 255 - 273
DOI https://doi.org/10.1051/cocv/2012008
Published online 11 May 2012
  1. X. Fu, A weighted identity for partial differential operators of second order and its applications. C. R. Acad. Sci., Sér. I Paris 342 (2006) 579–584. [CrossRef] [MathSciNet]
  2. A.V. Fursikov and O.Yu. Imanuvilov, Controllability of Evolution Equations, Lect. Notes Ser. Seoul National University, Seoul 34 (1996).
  3. E. Hebey, Nonlinear Analysis on Manifolds : Sobolev Spaces and Inequalities, Courant Lect. Notes Math. New York University Courant Institute of Mathematical Sciences, New York 5 (1999).
  4. D. Jerison and G. Lebeau, Nodal sets of sums of eigenfunctions, in Harmonic Analysis and Partial Differential Equations. Chicago, IL (1996) 223–239; Chicago Lect. Math., Univ. Chicago Press, Chicago, IL (1999).
  5. J. Jost, Riemann Geometry and Geometric Analysis. Springer-Verlag, Berlin, Heidelberg (2005).
  6. M.M. Larent’ev, V.G. Romanov and S.P. Shishat·Skii, Ill-posed Problems of Mathematical Physics and Analysis. Edited by Amer. Math. Soc. Providence. Transl. Math. Monogr. 64 (1986).
  7. G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur. Commun. Partial Differ. Equ. 20 (1995) 335–356. [CrossRef] [MathSciNet]
  8. G. Lebeau and L. Robbiano, Stabilizzation de l’équation des ondes par le bord. Duke Math. J. 86 (1997) 465–491. [CrossRef] [MathSciNet]
  9. G. Lebeau and E. Zuazua, Null controllability of a system of linear thermoelasticity. Arch. Ration. Mech. Anal. 141 (1998) 297–329. [CrossRef] [MathSciNet]
  10. X. Liu and X. Zhang, On the local controllability of a class of multidimensional quasilinear parabolic equations. C. R. Math. Acad. Sci., Paris 347 (2009) 1379–1384. [CrossRef] [MathSciNet]
  11. A. López, X. Zhang and E. Zuazua, Null controllability of the heat equation as singular limit of the exact controllability of dissipative wave equations. J. Math. Pure. Appl. 79 (2000) 741–808.
  12. Q. Lü, Bang-Bang principle of time optimal controls and null controllability of fractional order parabolic equations. Acta Math. Sin. 26 (2010) 2377–2386. [CrossRef] [MathSciNet]
  13. Q. Lü, Control and Observation of Stochastic Partial Differential Equations. Ph.D. thesis, Sichuan University (2010).
  14. Q. Lü, Some results on the controllability of forward stochastic heat equations with control on the drift. J. Funct. Anal. 260 (2011) 832–851. [CrossRef] [MathSciNet]
  15. Q. Lü and G. Wang, On the existence of time optimal controls with constraints of the rectangular type for heat equations. SIAM J. Control Optim. 49 (2011) 1124–1149. [CrossRef] [MathSciNet]
  16. L. Miller, How violent are fast controls for Schrödinger and plate vibrations? Arch. Ration. Mech. Anal. 172 (2004) 429–456. [CrossRef] [MathSciNet]
  17. J. Milnor, Morse Theory, Ann. Math. Studies. Princeton Univ. Press, Princeton, NJ (1963).
  18. K.-D. Phung and X. Zhang, Time reversal focusing of the initial state for Kirchhoff plate. SIAM J. Appl. Math. 68 (2008) 1535–1556. [CrossRef]
  19. G. Wang, L-null controllability for the heat equation and its consequences for the time optimal control problem. SIAM J. Control Optim. 47 (2008) 1701–1720. [CrossRef] [MathSciNet]
  20. X. Zhang, Explicit observability estimate for the wave equation with lower order terms by means of Carleman inequalities. SIAM J. Control Optim. 39 (2001) 812–834. [CrossRef] [MathSciNet]
  21. C. Zheng, Controllability of the time discrete heat equation. Asymptot. Anal. 59 (2008) 139–177. [MathSciNet]
  22. E. Zuazua, Controllability and observability of partial differential equations : Some results and open problems, in Handbook of Differential Equations : Evolutionary Differential Equations 3 (2006) 527–621. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.